1 / 82

Chemical Bonding I: Basic Concepts

Chemical Bonding I: Basic Concepts. Chapter 9. Generally, inter molecular forces are much weaker than intra molecular forces. Intermolecular Forces. Intermolecular forces are attractive forces between molecules. Intramolecular forces hold atoms together in a molecule.

gella
Download Presentation

Chemical Bonding I: Basic Concepts

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chemical Bonding I:Basic Concepts Chapter 9

  2. Generally, intermolecular forces are much weaker than intramolecular forces. Intermolecular Forces Intermolecular forces are attractive forces between molecules. Intramolecular forces hold atoms together in a molecule. • Intermolecular vs Intramolecular • 41 kJ to vaporize 1 mole of water (inter) • 930 kJ to break all O-H bonds in 1 mole of water (intra) “Measure” of intermolecular force boiling point melting point DHvap DHfus DHsub 11.2

  3. Group e- configuration # of valence e- ns1 1 1A 2A ns2 2 3A ns2np1 3 4A ns2np2 4 5A ns2np3 5 6A ns2np4 6 7A ns2np5 7 Valence electrons are the outer shell electrons of an atom. The valence electrons are the electrons that particpate in chemical bonding. 9.1

  4. - - - - + Li+ Li Li Li+ + e- e- + Li+ Li+ + F F F F F F The Ionic Bond [He] [Ne] 1s22s1 1s22s22p5 1s2 1s22s22p6 9.2

  5. 9.1

  6. Why should two atoms share electrons? + 8e- 7e- 7e- 8e- F F F F F F F F lonepairs lonepairs single covalent bond single covalent bond lonepairs lonepairs A covalent bond is a chemical bond in which two or more electrons are shared by two atoms. Lewis structure of F2 9.4

  7. single covalent bonds H H H H or H H O 2e- 2e- O 8e- O C O C O O double bonds 8e- 8e- 8e- double bonds O N N triple bond N N triple bond 8e- 8e- Lewis structure of water + + Double bond – two atoms share two pairs of electrons or Triple bond – two atoms share three pairs of electrons or 9.4

  8. Lengths of Covalent Bonds Bond Lengths Triple bond < Double Bond < Single Bond 9.4

  9. 9.4

  10. Writing Lewis Structures • Draw skeletal structure of compound showing what atoms are bonded to each other. Put least electronegative element in the center. • Count total number of valence e-. Add 1 for each negative charge. Subtract 1 for each positive charge. • Complete an octet for all atoms except hydrogen • If structure contains too many electrons, form double and triple bonds on central atom as needed. 9.6

  11. Write the Lewis structure of nitrogen trifluoride (NF3). F N F F Step 1 – N is less electronegative than F, put N in center Step 2 – Count valence electrons N - 5 (2s22p3) and F - 7 (2s22p5) 5 + (3 x 7) = 26 valence electrons Step 3 – Draw single bonds between N and F atoms and complete octets on N and F atoms. Step 4 - Check, are # of e- in structure equal to number of valence e- ? 3 single bonds (3x2) + 10 lone pairs (10x2) = 26 valence electrons 9.6

  12. Write the Lewis structure of the carbonate ion (CO32-). O C O 2 single bonds (2x2) = 4 1 double bond = 4 8 lone pairs (8x2) = 16 O Total = 24 Step 1 – C is less electronegative than O, put C in center • Step 2 – Count valence electrons C - 4 (2s22p2) and O - 6 (2s22p4) • -2 charge – 2e- 4 + (3 x 6) + 2 = 24 valence electrons Step 3 – Draw single bonds between C and O atoms and complete octet on C and O atoms. Step 4 - Check, are # of e- in structure equal to number of valence e- ? 3 single bonds (3x2) + 10 lone pairs (10x2) = 26 valence electrons Step 5 - Too many electrons, form double bond and re-check # of e- 9.6

  13. # of atoms bonded tocentral atom # lone pairs on central atom Arrangement ofelectron pairs Molecular Geometry Class linear linear B B Valence shell electron pair repulsion (VSEPR) model: Predict the geometry of the molecule from the electrostatic repulsions between the electron (bonding and nonbonding) pairs. AB2 2 0 10.1

  14. 0 lone pairs on central atom Cl Be Cl 2 atoms bonded to central atom 10.1

  15. # of atoms bonded tocentral atom # lone pairs on central atom trigonal planar trigonal planar Arrangement ofelectron pairs Molecular Geometry Class VSEPR AB2 2 0 linear linear AB3 3 0 10.1

  16. 10.1

  17. # of atoms bonded tocentral atom # lone pairs on central atom trigonal planar trigonal planar AB3 3 0 Arrangement ofelectron pairs Molecular Geometry Class tetrahedral tetrahedral VSEPR AB2 2 0 linear linear AB4 4 0 10.1

  18. 10.1

  19. # of atoms bonded tocentral atom # lone pairs on central atom trigonal planar trigonal planar AB3 3 0 Arrangement ofelectron pairs Molecular Geometry Class trigonal bipyramidal trigonal bipyramidal VSEPR AB2 2 0 linear linear tetrahedral tetrahedral AB4 4 0 AB5 5 0 10.1

  20. 10.1

  21. # of atoms bonded tocentral atom # lone pairs on central atom trigonal planar trigonal planar AB3 3 0 Arrangement ofelectron pairs Molecular Geometry Class trigonal bipyramidal trigonal bipyramidal AB5 5 0 octahedral octahedral VSEPR AB2 2 0 linear linear tetrahedral tetrahedral AB4 4 0 AB6 6 0 10.1

  22. 10.1

  23. 10.1

  24. lone-pair vs. lone pair repulsion lone-pair vs. bonding pair repulsion bonding-pair vs. bonding pair repulsion > >

  25. # of atoms bonded tocentral atom # lone pairs on central atom trigonal planar Arrangement ofelectron pairs Molecular Geometry bent Class VSEPR trigonal planar trigonal planar AB3 3 0 AB2E 2 1 10.1

  26. # of atoms bonded tocentral atom # lone pairs on central atom trigonal pyramidal tetrahedral Arrangement ofelectron pairs Molecular Geometry Class VSEPR tetrahedral tetrahedral AB4 4 0 AB3E 3 1 10.1

  27. # of atoms bonded tocentral atom # lone pairs on central atom trigonal pyramidal Arrangement ofelectron pairs Molecular Geometry AB3E 3 1 tetrahedral Class bent tetrahedral O H H VSEPR tetrahedral tetrahedral AB4 4 0 AB2E2 2 2 10.1

  28. # of atoms bonded tocentral atom # lone pairs on central atom trigonal bipyramidal distorted tetrahedron Arrangement ofelectron pairs Molecular Geometry Class VSEPR trigonal bipyramidal trigonal bipyramidal AB5 5 0 AB4E 4 1 10.1

  29. # of atoms bonded tocentral atom # lone pairs on central atom trigonal bipyramidal distorted tetrahedron Arrangement ofelectron pairs Molecular Geometry AB4E 4 1 Class trigonal bipyramidal T-shaped F F Cl F VSEPR trigonal bipyramidal trigonal bipyramidal AB5 5 0 AB3E2 3 2 10.1

  30. # of atoms bonded tocentral atom # lone pairs on central atom trigonal bipyramidal distorted tetrahedron Arrangement ofelectron pairs Molecular Geometry AB4E 4 1 Class trigonal bipyramidal T-shaped AB3E2 3 2 trigonal bipyramidal linear I I I VSEPR trigonal bipyramidal trigonal bipyramidal AB5 5 0 AB2E3 2 3 10.1

  31. octahedral octahedral AB6 6 0 # of atoms bonded tocentral atom # lone pairs on central atom square pyramidal octahedral Arrangement ofelectron pairs Molecular Geometry Class F F F Br F F VSEPR AB5E 5 1 10.1

  32. octahedral octahedral AB6 6 0 # of atoms bonded tocentral atom # lone pairs on central atom square pyramidal octahedral AB5E 5 1 Arrangement ofelectron pairs Molecular Geometry Class square planar octahedral F F Xe F F VSEPR AB4E2 4 2 10.1

  33. 10.1

  34. What are the molecular geometries of SO2 and SF4? F S F F O O S F Predicting Molecular Geometry • Draw Lewis structure for molecule. • Count number of lone pairs on the central atom and number of atoms bonded to the central atom. • Use VSEPR to predict the geometry of the molecule. AB4E AB2E distorted tetrahedron bent 10.1

  35. H H C O H C O H formal charge on an atom in a Lewis structure total number of valence electrons in the free atom total number of nonbonding electrons ( total number of bonding electrons ) 1 - - = 2 Two possible skeletal structures of formaldehyde (CH2O) An atom’s formal charge is the difference between the number of valence electrons in an isolated atom and the number of electrons assigned to that atom in a Lewis structure. The sum of the formal charges of the atoms in a molecule or ion must equal the charge on the molecule or ion. 9.7

  36. H C O H C – 4 e- O – 6 e- 2H – 2x1 e- 12 e- formal charge on an atom in a Lewis structure total number of valence electrons in the free atom total number of nonbonding electrons ( total number of bonding electrons ) 1 - - = 2 single bonds (2x2) = 4 2 1 double bond = 4 2 lone pairs (2x2) = 4 Total = 12 -1 +1 formal charge on C = 4 - 2- ½ x 6 = -1 formal charge on O = 6 - 2- ½ x 6 = +1 9.7

  37. C – 4 e- H O – 6 e- C O H 2H – 2x1 e- 12 e- formal charge on an atom in a Lewis structure total number of valence electrons in the free atom total number of nonbonding electrons ( total number of bonding electrons ) 1 - - = 2 single bonds (2x2) = 4 2 1 double bond = 4 2 lone pairs (2x2) = 4 Total = 12 0 0 formal charge on C = 4 - 0- ½ x 8 = 0 formal charge on O = 6 - 4- ½ x 4 = 0 9.7

  38. Which is the most likely Lewis structure for CH2O? H C O H H C O H -1 +1 0 0 Formal Charge and Lewis Structures • For neutral molecules, a Lewis structure in which there are no formal charges is preferable to one in which formal charges are present. • Lewis structures with large formal charges are less plausible than those with small formal charges. • Among Lewis structures having similar distributions of formal charges, the most plausible structure is the one in which negative formal charges are placed on the more electronegative atoms. 9.7

  39. What are the resonance structures of the carbonate (CO32-) ion? - - + + O O O O O O O O O C C C O O O - - - - O O O - - A resonance structure is one of two or more Lewis structures for a single molecule that cannot be represented accurately by only one Lewis structure. 9.8

  40. Be – 2e- 2H – 2x1e- H Be H 4e- B – 3e- 3 single bonds (3x2) = 6 3F – 3x7e- F B F 24e- Total = 24 9 lone pairs (9x2) = 18 F Exceptions to the Octet Rule The Incomplete Octet BeH2 BF3 9.9

  41. N – 5e- S – 6e- N O 6F – 42e- O – 6e- 48e- 11e- F 6 single bonds (6x2) = 12 F F Total = 48 S 18 lone pairs (18x2) = 36 F F F Exceptions to the Octet Rule Odd-Electron Molecules NO The Expanded Octet (central atom with principal quantum number n > 2) SF6 9.9

  42. Increasing difference in electronegativity Covalent Polar Covalent Ionic partial transfer of e- share e- transfer e- Classification of bonds by difference in electronegativity Difference Bond Type 0 Covalent  2 Ionic 0 < and <2 Polar Covalent 9.5

  43. Classify the following bonds as ionic, polar covalent, or covalent: The bond in CsCl; the bond in H2S; and the NN bond in H2NNH2. Cs – 0.7 Cl – 3.0 3.0 – 0.7 = 2.3 Ionic H – 2.1 S – 2.5 2.5 – 2.1 = 0.4 Polar Covalent N – 3.0 N – 3.0 3.0 – 3.0 = 0 Covalent 9.5

  44. F H F H Polar covalent bond or polar bond is a covalent bond with greater electron density around one of the two atoms electron rich region electron poor region e- poor e- rich d+ d- 9.5

  45. X (g) + e- X-(g) Electronegativity is the ability of an atom to attract toward itself the electrons in a chemical bond. Electron Affinity - measurable, Cl is highest Electronegativity - relative, F is highest 9.5

  46. 9.5

  47. F H d- d+ Dipole Moments and Polar Molecules electron rich region electron poor region m = Q x r Q is the charge r is the distance between charges 1 D = 3.36 x 10-30 C m 10.2

  48. 10.2

  49. 10.2

  50. Which of the following molecules have a dipole moment? H2O, CO2, SO2, and CH4 O O S H H H O O O C H H C H dipole moment polar molecule dipole moment polar molecule no dipole moment nonpolar molecule no dipole moment nonpolar molecule 10.2

More Related