190 likes | 355 Views
Si Pixel Tracking Detectors. Introduction Sensor Readout Chip Mechanical Issues Performance -Diamond. 36 MPix 150x150mm 2. HISTORICAL. Vertex High Radiation Stand- resolution multi hardness alone Tracking Trig
E N D
Si Pixel Tracking Detectors • Introduction • Sensor • Readout Chip • Mechanical Issues • Performance • -Diamond
36 MPix 150x150mm 2
HISTORICAL Vertex High Radiation Stand- resolution multi hardness alone Tracking Trig 80’s- CCD detectors- SLD X Si - diode x x 90’s- Si - diode- Omega2/3,DELPHI X X x Si - diode- SSC/LHC X X X Diamond x x x 2000’s Si - diode/ LHC/BTEV X X X X Diamond X X X X
Track Cluster • Pixel Tracker • Pixel Size • Occupancy • Charge Sharing • S/N • ExB Drift • Radiation Damage • LHC - 1014 /cm2/yr & Trigger Single Track Charge Sharing Vertex Resolution (20-30)mm IP
Radiation Damage Effects • Increase in volume leakage current. • Build-up of effective p-doping (bulk inversion). • Charge trapping. • Reverse Annealing- inactive defects become active, • increasing effective p-doping. (T-dependent)
BASIC PACKAGE • Sensor Bump Bonded to Readout Chip • In or Pb/Sn for Bumps • Wafer Thinning • Dicing • Yield
Single Ring p-stop Design n+ n- p+ • Sensors & Isolation • Guard Ring Design • p-stop, p-spray • Radiation Damage • -Bulk Damage • -Depletion Voltage • Type Inversion • Self Annealing/Thermal • Diamond Detectors • -Radiation Hard • -Simple Architecture Electrode Diamond Electrode CVD DIAMOND
READOUT CHIP (CMOS) • Radiation Hard Architecture (SOI) • Military/ Space Science • Analoque/Digital • SEU, Latchup (10-6 -10-10) • DMILL .80mm Bi-CMOS • IBM .25mm <----- Thin Si Layer Oxide Si Substrate PSI Readout Chip
Reflow and Wick-over • BUMP and FLIP-CHIP Interconnect • Choice of Indium or Solder (PbSn) • Indium • -Evaporation, 2 bumps, Allignment • -High Yield • Electroplated Solder • -Reflow techniques • ~180oC. Flux, Self Alligning • -Complex UBM (UnderBump Metalization) • -Excellent Electrical and Mechanical • Contact Readout Chip Sensor
8.0mm Detectors TBM 52 x 53 array 150 x 150mm Clk 10.5mm Optical links FEC FED DOUBLE COLUMN PERIPHERY Fast Trigger TIME STAMP and READOUT BUS T TRIGGER BLK Readout Amplifier Transmission Line Drivers I2C DACS CONTROL and INTERFACE BLOCK Power Supply / Clock Pads 400K transistors ~30%yield Pseudo -TRIGGER PAD SLOW CONTROL UPLOADS 40MHz I2C DATA FAST TRIGGER OUT (L3)
Low Mass Support Structures - Be , C-Fiber Wafer Thinning -.25 mm lithography on 8”800mm Dicing Accuracy and Placement Radiation Hard Glues/Epoxies Cooling (KWs per Detector) - (10-20) oC Flurocarbons (high mass) Evaporative Cooling(low mass) Thermal Expansion MECHANICAL COOLING
High Density Interconnects VHDI Sensor ROC Bump Bonds HDI Wire Bonds Be Panel Silicon Plate
PERFORMANCE (Si & Diamond in CERN Test Beam) Charge Sharing Vienna Repeater Y Row X Z, B } Double Column Beam 20o ROC, PSI36: 11 double columns x 30 rows Pixels 150 x150 m2 8mm D:\Transfer from Bob\Pictures\Test Beam Hardware\Geometry Pixels.ppt
Si 25000e/mip 2000e noise 99% efficiency Dia 9000e/mip 2000e noise 95% efficiency PERFORMANCE (cont) Charge sharing vs position Pixels at 20o to beam = 14 m over pixel 150 m 150 m Charge sharing vs position 150 m / 12 = 43 m = 46 m over pixel Pixels normal to beam
CONCLUSIONS • Si Pixel Detectors- a Great Challenge! • Many Difficult Technologies to Master. • Much Will be Solved in LHC/BTeV era. • HEP Must Learn to Deal with High Development Costs. • Trigger Possibilities Abundant. • Diamond Detectors Feasible.