1 / 15

Chapter 5: GASES Part 2

Chapter 5: GASES Part 2. Dalton’s Law of Partial Pressures. Since gas molecules are so far apart, we can assume that they behave independently. Dalton’s Law: in a gas mixture, the total pressure is the sum of the partial pressures of each component:

gen
Download Presentation

Chapter 5: GASES Part 2

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 5: GASES Part 2

  2. Dalton’s Law of Partial Pressures • Since gas molecules are so far apart, we can assume that they behave independently. • Dalton’s Law: in a gas mixture, the total pressure is the sum of the partial pressures of each component: PTotal = P1 + P2 + P3 + . . .

  3. Using Dalton’s Law: Collecting Gases over Water • Commonly we synthesize gas and collect it by displacing water, i.e. bubbling gas into an inverted container

  4. Using Dalton’s Law: Collecting Gases over Water • To calculate the amount of gas produced, we need to correct for the partial pressure of water: Ptotal = Pgas + Pwater

  5. Using Dalton’s Law: Collecting Gases over Water Example 3: Mixtures of helium and oxygen are used in scuba diving tanks to help prevent “the bends”. For a particular dive, 46 L of He at 25°C and 1.0 atm and 12 L of O2 at 25°C and 1.0 atm were each pumped into a tank with a volume of 5.0 L. Calculate the partial pressure of each gas and the total pressure in the tank at 25°C

  6. Kinetic Molecular Theory Developed to explain gas behavior • Gases consist of a large number of molecules in constant motion. • Volume of individual particles is  zero. • Collisions of particles with container walls cause pressure exerted by gas. • Particles exert no forces on each other. • Average kinetic energy  Kelvin temperature of a gas.

  7. Kinetic Molecular Theory • As the kinetic energy increases, the average velocity of the gas increases

  8. Kinetic Molecular Theory: Applications to Gases • As volume of a gas increases: • the KEavg of the gas remains constant. • the gas molecules have to travel further to hit the walls of the container. • the pressure decreases

  9. Kinetic Molecular Theory: App’s to Gases (continued) • If the temperature increases at constant V: • the KEavg of the gas increases • there are more collisions with the container walls • the pressure increases

  10. Kinetic Molecular Theory: App’s to Gases (continued) • effusion is the escape of a gas through a tiny hole (air escaping through a latex balloon) • the rate of effusion can be quantified

  11. Kinetic Molecular Theory: App’s to Gases (continued) The Effusion of a Gas into an Evacuated Chamber

  12. Kinetic Molecular Theory: App’s to Gases (continued) • Diffusion: describes the mixing of gases. The rate of diffusion is the rate of gas mixing. • Diffusion is slowed by gas molecules colliding with each other.

  13. Real Gases Real Gases do not behave exactly as Ideal Gases. For one mole of a real gas,PV/RT differs from 1 mole. The higher the pressure, the greater the deviation from ideal behavior

  14. Real Gases

  15. Real Gases • The assumptions of the kinetic molecular theory show where real gases fail to behave like ideal gases: • The molecules of gas each take up space • The molecules of gas do attract each other • Chemists must correct for non-ideal gas behavior when at high pressure(smaller volume) and low temperature(attractive forces become important).

More Related