300 likes | 608 Views
Molecular Modeling: Molecular Vibrations. C372 Introduction to Cheminformatics II Kelsey Forsythe. Next Time . Modeling Nuclear Motion (Vibrations) Harmonic Oscillator Hamiltonian. Modeling Potential energy (1-D). 0. 0 at minimum. Modeling Potential energy (1-D).
E N D
Molecular Modeling:Molecular Vibrations C372 Introduction to Cheminformatics II Kelsey Forsythe
Modeling Nuclear Motion (Vibrations)Harmonic Oscillator Hamiltonian
0 0 at minimum Modeling Potential energy (1-D)
Assumptions:Harmonic Approximation Determining k?
Assumptions:Harmonic Approximation E(.65)=3.22E-20J E(.83)=2.13E-20J Dx=.091
0 0 at minimum Modeling Potential energy (N-D) Coordinate Coupling Spoils!!!
CoordinatesDegrees of Freedom? • For N points in space • 3*N degrees of freedom exist • Cartesian to Center of Mass system • All points related by center/centroid of mass • COM ia origin
CoordinatesCenter of Mass System • 3*N degrees of freedom exist DOF = itranslation + jrotation + kvibration • Linear: • 3N=3 + 2 + k, k=3N-5 • Non-linear • 3N=3+3+k, k=3N-6
CoordinatesDegrees of Freedom? • Hydrogen Molecule • Cartesianr1=x1,y1,z1r2=x2,y2,z2 • COM-translational degrees of freedomx=(m1x1+m2x2)/MTy=(m1y1+m2y2)/MTz=(m1z1+m2z2)/MT • COM-rotational degrees of freedomr,q - required • 3(2)-5 = 1 (stretch of hydrogen molecule)
Normal Modes • Decouples motion into orthogonal coordinates • All motions can be represented in terms of combinations of these coordinates or modes of motion • These normal modes are typically/naturally those of bond stretching and angle bending
Normal Modes • Problem
Normal Modes • Solutionr q
Normal Modes • Solutionr q Eigenvalue Problem
Normal Modes • Solutionr q Eigenvalue Problem Normal modes
Normal ModesHydrogen • N=#atoms=2 • # normal modes = ? • Linear • 3N-5=1
Normal ModesAcetylene • N=#atoms=4 • # normal modes = ? • Linear • 3N-5=7
QM Harmonic oscillator Modeling • Need to solve Schrodinger Equation for harmonic oscillator
QM Harmonic oscillator Modeling • Solutions are Hermite Polynomicals
QM Harmonic oscillator Modeling • Energies • NON-CLASSICAL EFFECTS • Quantization • Emin NOT zero
QM Harmonic oscillator ERRORS • Molecular Mechanics • Error a parameterization • Semi-Empirical • SAM1>PM3>AM1 • HF • Frequencies too high • Harmonic approximation • No electron correlation • Correction • Multiply .9wout • DFT - typically better than semi-empirical and HF
Application-Thermodynamics/Statistical Mechanics • Equipartition Theorem • Heat capacities • Enthalpy, Entropy and Free Energy
Anharmonic Effects? • Must calculate higher order derivatives • More computational time required