200 likes | 377 Views
Equilibrium Calculations Lesson 8. 1. When 0.800 moles of SO 2 and 0.800 moles of O 2 are placed into a 2.00 litre container and allowed to reach equilibrium, the equilibrium [SO 3 ] is to be 0.300 M. Calculate the Keq value. Implies initial and not equilibrium concentrations- ICE.
E N D
Equilibrium Calculations Lesson 8
1. When 0.800 moles of SO2 and 0.800 moles of O2are placed into a 2.00 litre container and allowed to reach equilibrium, the equilibrium [SO3] is to be 0.300 M. Calculate the Keq value. Implies initial and not equilibrium concentrations- ICE
1. When 0.800 moles of SO2 and 0.800 moles of O2are placed into a 2.00 litre container and allowed to reach equilibrium, the equilibrium [SO3] is to be 0.300 M. Calculate the Keq value. Implies initial and not equilibrium concentrations- ICE 2SO2 (g) + O2 (g)⇋ 2SO3 (g) I C E
1. When 0.800 moles of SO2 and 0.800 moles of O2are placed into a 2.00 litre container and allowed to reach equilibrium, the equilibrium [SO3] is to be 0.300 M. Calculate the Keq value. Implies initial and not equilibrium concentrations- ICE 2SO2 (g) + O2 (g)⇋ 2SO3 (g) I 0.400 M 0.400M 0 C E
1. When 0.800 moles of SO2 and 0.800 moles of O2are placed into a 2.00 litre container and allowed to reach equilibrium, the equilibrium [SO3] is to be 0.300 M. Calculate the Keq value. Implies initial and not equilibrium concentrations- ICE 2SO2 (g) + O2 (g)⇋ 2SO3 (g) I 0.400 M 0.400M 0 C E 0.300 M
1. When 0.800 moles of SO2 and 0.800 moles of O2are placed into a 2.00 litre container and allowed to reach equilibrium, the equilibrium [SO3] is to be 0.300 M. Calculate the Keq value. Implies initial and not equilibrium concentrations- ICE 2SO2 (g) + O2 (g)⇋ 2SO3 (g) I 0.400 M 0.400M 0 C +0.300 M E 0.300 M X 2/2
1. When 0.800 moles of SO2 and 0.800 moles of O2are placed into a 2.00 litre container and allowed to reach equilibrium, the equilibrium [SO3] is to be 0.300 M. Calculate the Keq value. Implies initial and not equilibrium concentrations- ICE 2SO2 (g) + O2 (g)⇋ 2SO3 (g) I 0.400 M 0.400M 0 C -0.300 M +0.300 M E 0.300 M X 1/2
1. When 0.800 moles of SO2 and 0.800 moles of O2are placed into a 2.00 litre container and allowed to reach equilibrium, the equilibrium [SO3] is to be 0.300 M. Calculate the Keq value. Implies initial and not equilibrium concentrations- ICE 2SO2 (g) + O2 (g)⇋ 2SO3 (g) I 0.400 M 0.400M 0 C -0.300 M -0.150 M +0.300 M E 0.300 M
1. When 0.800 moles of SO2 and 0.800 moles of O2are placed into a 2.00 litre container and allowed to reach equilibrium, the equilibrium [SO3] is to be 0.300 M. Calculate the Keq value. Implies initial and not equilibrium concentrations- ICE 2SO2 (g) + O2 (g)⇋ 2SO3 (g) I 0.400 M 0.400M 0 C -0.300 M -0.150 M +0.300 M E 0.100 M 0.250 M 0.300 M Equilibrium concentrations go in the equilibrium equation!
1. When 0.800 moles of SO2 and 0.800 moles of O2are placed into a 2.00 litre container and allowed to reach equilibrium, the equilibrium [SO3] is to be 0.300 M. Calculate the Keq value. Implies initial and not equilibrium concentrations- ICE 2SO2 (g) + O2 (g)⇋ 2SO3 (g) I 0.400 M 0.400M 0 C -0.300 M -0.150 M +0.300 M E 0.100 M 0.250 M 0.300 M Equilibrium concentrations go in the equilibrium equation! Keq = [SO3]2 [SO2]2[O2]
1. When 0.800 moles of SO2 and 0.800 moles of O2are placed into a 2.00 litre container and allowed to reach equilibrium, the equilibrium [SO3] is to be 0.300 M. Calculate the Keq value. Implies initial and not equilibrium concentrations- ICE 2SO2 (g) + 1O2 (g)⇋2SO3 (g) I 0.400 M 0.400M 0 C -0.300 M -0.150 M +0.300 M E 0.100 M 0.250 M 0.300 M Equilibrium concentrations go in the equilibrium equation! Keq = [SO3]2 (0.3)2 = [SO2]2[O2] (0.1)2(0.25)
1. When 0.800 moles of SO2 and 0.800 moles of O2are placed into a 2.00 litre container and allowed to reach equilibrium, the equilibrium [SO3] is to be 0.300 M. Calculate the Keq value. Implies initial and not equilibrium concentrations- ICE 2SO2 (g) + O2 (g)⇋ 2SO3 (g) I 0.400 M 0.400M 0 C -0.300 M -0.150 M +0.300 M E 0.100 M 0.250 M 0.300 M Equilibrium concentrations go in the equilibrium equation! Keq = [SO3]2 (0.3)2 = = 36.0 [SO2]2[O2] (0.1)2(0.25)
2. 0.80 moles of H2 and 1.4 moles of S are initially in a 4.0 L flask and allowed to reach equilibrium. Calculate the [H2] at equilibrium. H2(g) + S(s)⇄ H2S(g) Keq= 14 I 0.20 M 0 C x x E 0.20 - x x Equilibrium concentrations go in the equilibrium equation! Keq = [H2S]x = = 14 [H2] .2 - x
x= 14 .2 - x 1 cross multiply 1x = 14(.2 - x) 1x = 2.8 - 14x 1x + 14x = 2.8 15x = 2.8 x = 0.19 M [H2] = 0.20 - x [H2] = 0.20 - 0.19 [H2] = 0.01 M
3. If 6.0 moles of HI are initially in a 3.00L vessel and allowed to reach equilibrium, what is the equilibrium concentration of H2? 2HI(g)⇄ H2(g) + I2(g) Keq = 0.0183 I 2.0 M 0 0 C 2xx x E 2.0 - 2x x x Keq = [H2][I2]x2 = = 0.0183 [HI]2 (2 - 2x)2
x2 = 0.0183 (2 - 2x)2 take the square root of both sides x = 0.13528 (2 - 2x) 1 cross multiple 1x = 0.270555 -0.27055x 1.27055x = 0.270555 x = [H2] = 0.21 M
4. The same number of moles of I2 and Cl2 are placed in a 1.0L flask and allowed to reach equilibrium. If the equilibrium concentration of ICl is 0.40 M, calculate the initial number of moles of I2 and Cl2. I2 (g) + Cl2 (g)⇄ 2ICl (g) Keq= 10.0 I x x 0 C 0.20 M0.20 M 0.40 M E x - 0.20 x - 0.20 0.40 M Keq = [ICl]2 = 10.0 [I2][Cl2] 0.402 = 10.0 (x - .20)2
0.402 = 10.0 (x - .20)2 square root both sides 0.40 = 3.16227 x - .20 1 0.4 = 3.16227x - 0.63246 1.03246 = 3.16227x x = [I2] = [Cl2] = 0.33 M 1 L x 0.33 mole = 0.33 moles 1L
5. Sketch the changes in concentrations of [O2] and [N2] as equilibrium is obtained. Calculate the value of the Keq. N2O4(g)⇋ 2O2(g) + N2(g) I 4.00 0 0 C 1.20 1.20 2.40 E 2.80 1.20 2.40 2.40 M 1.20 M 4.00 M 2.80 M [N2O4] 20 40 Time (min)
Keq = [N2][O2]2 [N2O4] Keq = [1.20][2.40]2 [2.80] = 2.47