1 / 33

Illumination, resolution, and incidence-angle in PSDM: A tutorial

?. Illumination, resolution, and incidence-angle in PSDM: A tutorial. Isabelle Lecomte NORSAR, R&D Seismic Modelling, P.O.Box 53, 2027 Kjeller, Norway isabelle@norsar.no. Space-variant PSF!. Hubble telescope: space-variant PSF*. *Point-Spread Functions. http://huey.jpl.nasa.gov/mprl.

gibson
Download Presentation

Illumination, resolution, and incidence-angle in PSDM: A tutorial

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ? Illumination, resolution, and incidence-angle in PSDM:A tutorial • Isabelle Lecomte • NORSAR, R&D Seismic Modelling, P.O.Box 53, 2027 Kjeller, Norway • isabelle@norsar.no

  2. Space-variant PSF! Hubble telescope: space-variant PSF* *Point-Spread Functions http://huey.jpl.nasa.gov/mprl

  3. Seismics: PSF may be very space-variant! Point-Spread Functions in Marmousi* *Marmousi model courtesy of IFP

  4. * ** Acoustic/elastic impedance Reflection ~ contrasts! PSDM … at best! Not 1D convolution! ! Resolution, illumination, …etc! *http://www.lenna.org , **Liner (2000), and Monk (2002)

  5. Content • Introduction • Image formation in PSDM • Scattering wavenumber: the key! • Resolution • Illumination • Examples • Controlling imaging • Conclusions

  6. Migration (*)GF: Green’s Function Waves! Waves! Key information: Scattering Wavenumber! Back propagation 1 G,G:GF(*) ●: GF-node Incident wave Wave propagation corrections Waves! Imaging ? 2 Imaging Scattering Focusing Imaging in PSDM: K is the key! Getting data

  7. Model: constant velocity Data: point scatterer ■ ■ Common shot (x = 0) Common offset (0 m) data data ■ ● point scatterer ellipse circle PSDM PSDM Scattering isochrones

  8. ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Same point scatterer… ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● …different PSDM images! PSDM and point scatterer Common offset (0 m) 1 trace ∑ traces Common shot (x = 0) ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ● 1 trace ∑ traces

  9. PSF and PSDM: why? • scattering structures = set of point scatterers (e.g., exploding reflector concept, etc) • PSDM(point scatterer) = Point-Spread Function • If PSF known: PSDM image = Reflectivity * PSF • Question 1: how to get PSF without generating synthetic point scatterers at each image point? • Question 2: how to use PSF to understand and improve PSDM?

  10. Content • Introduction • Image formation in PSDM • Scattering wavenumber: the key! • Resolution • Illumination • Examples • Controlling imaging • Conclusions

  11. (*) patent pending Methods: ”ray-tracing” based • Green’s functions • Paraxial ray tracing • Wavefront Construction • Eikonal solver • PSDM(~Kirchhoff) • Diffraction Stack (DS) • Local Imaging (LI) • 1 GF-node only! • ”SimPLI” (*) • Simulated Prestack Local Imaging • No seismic records needed!

  12. Incident wavenumber scattered wavenumber Scattering Wavenumber K Definition at a local “Scattering Object” (diffraction, reflection, ..) Easy to calculate with ray tracing and similar Calculation performed in the PSDM velocity model

  13. geophone g source s • - Vs: incident wave velocity • Vg: scattered wave velocity • ŝ and ĝ: unit vectors • n frequency • - VP: P-velocity • VS: S-velocity K If Vs = Vg (no wave conversion) K ŝ ŝ ĝ ĝ ● ● ● ”incidence” angle = 0 ║ĝ – ŝ║ = 2 ”incidence” angle ≠ 0 ║ĝ – ŝ║ < 2 K: which parameters?

  14. X no data! -Kx max. +Kx max. PSF -Kz max. Green’s Functions at one GF-node max./2 2D FFT-1 Z module ● 0 ● 0. ● 2D FFT Marmousi ● From K to PSF using FFT

  15. K is perpendicular to the scattering isochrone ║K ║ = f(n) : pulse effect K corresponds to a local plane wavefront approximation of the scattering isochrone [K] PSF K and scattering isochrones

  16. Content • Introduction • Image formation in PSDM • Scattering wavenumber: the key! • Resolution • Illumination • Examples • Controlling imaging • Conclusions

  17. Your model! Generalized Inverse 1 2 Direct problem Inverse problem Resolution! 1+2 Data independent! Resolution of an inverse problem! d: data m: parameters obs.: observed est.: estimated

  18. [K]for [5-60] Hz qs = [0-10] º DKZ DKx 1 Lateral resolution ~ 2p / DKX Vertical resolution ~ 2p / DKZ K and resolution: wavenumber coverage Marmousi model Courtesy of IFP

  19. K Kmean low R high R PSF K and PSF: no data! K Kmean high R low R PSF PSDM of point scatterer and PSF Common offset (0 m) PSDM – data from point scatterer Common shot (x = 0)

  20. Content • Introduction • Image formation in PSDM • Scattering wavenumber: the key! • Resolution • Illumination • Examples • Controlling imaging • Conclusions

  21. From source To geophone From source To geophone qs qg qs qg incident ray reflected ray qs incidence angle qgscattering angle K and reflection ”P-to-P” reflection ”P-to-S” reflection Reflector Reflector • In the PSDM velocity model: • A given couple (ks,kg) may correspond to an actual reflection. • it is the case IF there is a reflector perpendicular to K at the GF-node.

  22. [K]for [5-60] Hz qs = [0-10] º 2 Illuminated dips ~ 25 º ~ 45 º K and illumination: dip Marmousi model Courtesy of IFP Marmousi Model Courtesy of IFP

  23. Content • Introduction • Image formation in PSDM • Scattering wavenumber: the key! • Resolution • Illumination • Examples • Controlling imaging • Conclusions

  24. 120 Hz [K] Target model (Vp) Reflectivity 0 Hz Spectrum 10 Hz 20 Hz 30 Hz 40 Hz SimPLI SimPLI SimPLI SimPLI Playing with the pulse

  25. Fault “Green’s Functions” Reflectivity = 1 [K] incl. 20 Hz pulse Fault Fault PSF SimPLI – 0 km offset 0 km offset FFT-1 FFT-1 FFT+1 FFT-1 FFT-1 Fault Fault PSF 4 km offset SimPLI – 4 km offset Illumination and resolution: illustration

  26. Σ Final SimPLI Image – 20 Hz Incidence-angle in PSDM Reflectivity : 00°-05° Reflectivity : 05°-15° Reflectivity : 15°-25° Reflectivity: 35°-45° Reflectivity: 25°-35° [K] Filter : 15°-25° [K] Filter : 25°-35° [K] Filter : 00°-05° [K] Filter : 05°-15° [K] Filter: 35°-45° SimPLI Image: 00°-05° SimPLI Image: 15°-25° SimPLI Image: 25°-35° SimPLI Image: 35°-45° SimPLI Image: 05°-15°

  27. A B ● ● Not illuminated! Good resolution Good illumination Poor resolution Bad illumination K PSF K PSF Overburden effects

  28. KX KX KX This is PSDM effects! No illumination effects! KZ KZ KZ Elastic impedance (x,z) “1D” PSDM 2D Filter: 0 km offset 2D Filter: 4 km offset ! Function of survey, overburden, pulse, wave-phases, local velocity. PSDM images: not a simple 1D convolution!

  29. Content • Introduction • Image formation in PSDM • Scattering wavenumber: the key! • Resolution • Illumination • Examples • Controlling imaging • Conclusions

  30. Dshot: 12.5 m Dshot: 125 m Dshot: 625 m K K K PSF PSF PSF SimPLI SimPLI SimPLI Image and survey sampling

  31. Blind! Controlled! Controlling imaging: check local K! ”blind!” automatic corrections Irregular Sampling!

  32. Conclusions • Define your PSDM velocity model… • Should be smooth in the imaging zone… • … but can have layers with contrast outside! • …then use the scattering wavenumbers! • Prior or after imaging • Survey planning mode • Resolution/illumination analyses • Controlling and improving imaging • Understanding image formation • Testing the validity of interpretation results • Flexible and fast! • Ray tracing based • FFT

  33. Acknowledgements • Research Council of Norway (projects 131341/420, 128440/43, and 153889/420) • Statoil (Gullfaks), IFP (Marmousi), Seismic Unix, and the “Svalex” project (www.svalex.net, Storvola) • Håvar Gjøystdal, Åsmund Drottning and Ludovic Pochon-Guerin. • Thanks 

More Related