1 / 85

Impact of eruptions

V. o. s. l. c. e. a. o. n. Part II. Prediction. Impact of eruptions. Supervolcanoes. Volcanoes in space. Prediction of Volcanic Eruptions. Long Term Prediction. Identify volcanoes and the frequency and style of their eruptions (a geological problem).

gil-cohen
Download Presentation

Impact of eruptions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. V o s l c e a o n Part II Prediction Impact of eruptions Supervolcanoes Volcanoes in space

  2. Prediction of Volcanic Eruptions Long Term Prediction Identify volcanoes and the frequency and style of their eruptions (a geological problem). Establish probabilities of eruption, style and location for individual volcanoes. Establish the level of risk based on historic and geologic record. E.g., for individual volcanoes: determine most likely routes for lahars, nuees ardentes, lava flows, etc., and avoid construction in those areas.

  3. Hazard zones have been distinguished around Mt. Shasta based on topography and past experience with eruptions. Zone 1: areas likely to be affected most frequently. Most future flows from summit eruptions probably would stay within this zone. Zone 1

  4. Hazard zones have been distinguished around Mt. Shasta based on topography and past experience with eruptions. Zone 2 Zone 2: areas likely to be affected by lava flows erupted from vents on the flank of the volcano or that move into zone 2 from zone 1. Zone 1: areas likely to be affected most frequently. Most future flows from summit eruptions probably would stay within this zone.

  5. Hazard zones have been distinguished around Mt. Shasta based on topography and past experience with eruptions. Zone 3 Zone 3: areas likely to be affected infrequently and then only by long lava flows that originate at vents in zones 1 and 2 Zone 1: areas likely to be affected most frequently. Most future flows from summit eruptions probably would stay within this zone. Zone 2: areas likely to be affected by lava flows erupted from vents on the flank of the volcano or that move into zone 2 from zone 1.

  6. Short-term prediction Based on the recognition of a pattern of events prior to previous eruptions. Gas emissions: rates of emission and type of gas changes in some volcanoes. Important gases include sulfur dioxide (SO2) and carbon dioxide (CO2) Changes in concentration may reflect movement of the magma up the vent.

  7. Surface tilting: recognition of changes in the land surface due to building pressure in the conduit. April 8, 1980 May 2 April 26 A surface bulge appeared on Mt. St. Helens prior to its eruption.

  8. Earthquakes: generated as the magma moves up the feeder conduit to the vent. When viscous magma becomes stuck in the conduit strain energy builds as more magma tries to push out. Movement takes place in a series of “jerks” as the rock material breaks. Each “jerk” produces an earthquake. Magnitudes generally less than 5 M. The more earthquakes the further the magma has moved.

  9. Mount Spurr, Alaska: The 1992 Eruption of Crater Peak Vent USGS Black bars: earthquake frequency. Red lines: volcanic eruptions.

  10. A combination of approaches is likely the key to short-term prediction.

  11. The impact of volcanic eruptions

  12. Volcanic Hazards Lava flows Commonly destroy property in Hawaii and Iceland. Damage limited to the vicinity in the immediate area of the volcano. Fatalities rare due to slow speed of advancing lava flow.

  13. Ash fall Mt. St. Helens’ ash cloud Extensive property damage and fatalities can result from heavy ash falls. Significant ash in the upper atmosphere can circle the globe in a matter of weeks. More than 80 commercial jets have been damaged by flying through volcanic ash clouds.

  14. An ashfall 10 million years ago killed these rhinos that are preserved at Ashfall Fossil Beds State Historic Park, Nebraska. Death was not by burial but by lung failure due to inhaling the ash.

  15. Pyroclastic flows Lahars are fast moving mudflows that can inundate urban areas that are nearby the eruption. Lahars can also dam rivers and which can lead to extensive flooding.

  16. Lahars can be the most devastating outcome of many volcanoes. A relatively small eruption of Nevada del Ruiz, Columbia, in 1985, generated a lahar when the volcano melted a 2.5 km2 area of snow and ice. Water and debris rushed down the slopes, picking up more debris along the way.

  17. A 5 metre wall of water and debris slammed into the town of Amero, 72 km from the volcano. The lahar killed 28,700 people and destroyed over 5,000 structures in the city.

  18. Nuée ardentes destroy life and property in their paths. 60 people, thousands of animals and fish, and hundreds of acres of lumber were destroyed by ash flows from Mt. St. Helens. A Nuée Ardent killed 20,000 people when Mt. Vesuvius exploded and shed a pyroclastic flow across the village of Pompeii in 79 AD.

  19. People and animals died instantly from the rushing cloud of hot gas and ash.

  20. Landslides Landslides can be generated when a volcano collapses during an eruption. During the Mt. St. Helens eruption 2.3 km3 of debris slid down the mountain at speeds up to 240 km/hr. The slide traveled over 24 km and left a 45 m deep deposit. 350,000 years ago Mt. Shasta experienced a similar eruption and landslide that was 20 times greater than that of Mt. St. Helens.

  21. Volcanic Gases In addition to making magma more explosive, volcanic eruptions also include gases that can be deadly to all life. CO2, SO2and CO are the most abundant of harmful gases.

  22. SO2 emissions can have direct effects on life in the vicinity of a volcano. An eruption in 1783 of Laki Crater (Iceland) produced a sulfurous haze that lasted for 9 months and killed 75% of all livestock and 24% of the Icelandic population. Volcanoes release more than 130 to 230 million tonnes of CO2 into the atmosphere every year Humans add CO2 at the rate of approximately 22 billion tonnes per year (150 times the rate of volcanic production) Human CO2 production is equal to that if 17,000 volcanoes like Kilauea were erupting every year.

  23. Mammoth Mountain is a relatively young volcano that is emitting large volumes of CO2. Gas concentrations in the soil in some areas near the mountain are high enough to kill trees and small animals.

  24. If the air that we breath has more than 10% CO2 it becomes deadly because it displaces the Oxygen that we need for respiration. Lake Nios, Cameroon, is a very deep lake within a volcanic crater. The lake is so deep that hydrostatic pressure forces CO2 to remain at the lake bottom. When the pressure of the CO2 exceeds a certain limit the gas rapidly bubbles up out of the lake and flows as an invisible gas cloud down the adjacent slopes. On August 61, 1986 such a gas release flowed 19 km suffocating 1,700 people along its route.

  25. Lake Nyos 10 days after the 1986 eruption The fountain in the background lifts CO2 up to the surface so that it no longer accumulates.

  26. Tsunamis This is the newly forming summit of Krakatoa, growing where the 1883 eruption blew the top off of the original volcano. Caused by the displacement of seawater by eruptions of volcanic islands and submarine volcanoes. Krakatoa (1883 eruption) killed 36,000 people by the tsunami, alone (the most deadly outcome of the eruption).

  27. Global Climate Change Due to ash and gas that may spend years in the upper atmosphere; reduces incoming solar radiation. SO2from an eruption forms tiny droplets of sulfuric acid in the upper atmosphere. The droplets significantly increase global albedo…..a negative radiative forcing that leads to cooling. Mt. Pinatubo (1991) released 22 million metric tons of SO2 and reduced the Earth’s average temperature by 0.5 degrees Celsius in the year following the eruption.

  28. A series of eruptions of Tambora (Indonesia) extruded up to 150 km3 of magma (solid equivalent), much of it into the atmosphere. Tambora (1815 eruption) was followed in 1816 by the “year without a summer”. Average global temperature is estimated to have been reduced by 3 degrees Celsius.

  29. In June of 1816 there was widespread snowfall throughout the eastern United States. The normal growing season experienced repeated frosts as cold air extended much more southerly than normal. Food shortages and starvation are attributed to the deaths of 80,000 people. The global population was about 1 billion people in 1816. Our current population is a little over 6 billion. The 1816 fatality rate would have resulted in a death toll of nearly 500,000 people due to starvation.

  30. Approximately 260,000 people have been killed by volcanoes in historic times…most by a handful of individual eruptions.

  31. Volcanic Explosivity Index

  32. http://pubs.usgs.gov/publications/msh/comparisons.html

  33. Deadly Historic Volcanic Eruptions Mt. Pelée (West Indes) VEI = 4 A stratovolcano along the Caribbean trench.

  34. An eruption in 1902 following the growth of a lava dome on the side of the mountain. Lava domes are constructed of viscous lava and are prone to collapse, unleashing a violent pyroclastic flow.

  35. The nuée ardente that was generated when Mt. Pelée erupted swept 6 km downslope through the town of St. Vincent.

  36. Almost the entire population of 30,000 people were killed within minutes of inhaling the hot gases and ash. There were only two survivors; one was in a dungeon!

  37. Tambora (1815) VEI = 7 The largest eruption of historic time. Greatest impacts from pyroclastic flows and ash and gas eruptions. Approximately 150 km3 of ash was erupted with the explosions. 10,000 people were killed by bomb impacts, tephra falls and pyroclastic flows. By far the largest impact was on the Earth’s atmosphere. The eruption plume reached 44 km above the earth, loading the stratosphere with ashes and gases.

  38. The concentration mercury in ice cores from glaciers in Wyoming record a peak in atmospheric mercury that corresponds to the Tambora eruption. The atmospheric impact caused the “year without a summer” along with 80,000 deaths due to famine and disease.

  39. Krakatoa (1883) VEI = 6 On the Island of Rakata, Krakatoa was one of 130 active volcanoes in Indonesia (the country with the most active volcanoes in the world). The volcano had been inactive for almost 200 years prior to a series of small eruptions that began in 1883.

  40. The volcanoes of Indonesia are due to the northeastward subduction of the Indo-Australian plate beneath the Eurasian plate. Stratovolcanoes with a high probability of violent eruption.

  41. Krakatoa began its eruptive stage on May 20, 1883 immediately following a strong earthquake (no sensors were there to measure it). The first explosions were heard 160 km away and sent steam and ash upwards to a height of 11 km. By August 11 three vents were active on the volcano. On August 26 several loud eruptions took place over the course of the day sending dust and ash to over 25 km elevation into the atmosphere.

  42. On August 27, four very large eruptions began at 5:30 am. A 23 km2 area of the island was gone following the fourth eruption. The last of the four was the largest and could be heard from Sri Lanka to Australia, up to 4,600 km from the volcano.

  43. The caldera collapsed with the explosion, from an original height of 450m above sea level to 250m below sea level. The blast itself is thought to have ejected 20 km3 of tephra. The pyroclastic flow was experienced at sea as far as 80 km away. Ships experienced hurricane force winds loaded with tephra and smelling strongly of Sulfur. Burn-related fatalities were recorded up to 40 km away from the blast. An estimated 4,500 people died from the direct effects of the blast.

  44. This steamship was carried almost 2 km onto the land and dropped 10 m above sea level. The collapse of the caldera, combined with the explosion, generated a massive tsunami with a maximum height at landfall of 45 m. The impact was greatest on the nearby islands. Coral blocks up to 600 tons were washed ashore.

  45. Along low lying coasts of Java the waves washed 8 km onshore, dragging people along with them as they washed back to sea. The tsunami was recorded as a small rise in sea level as far away as the California coast (20 hours after the fourth blast). An estimated 36,417 people were killed by the tsunami alone. Ash from the volcano fell to Earth as far away as 2,500 km downwind over the days following the eruption. Ash and gases in the upper atmosphere led to a lowering of global temperature by several degrees.

  46. Anak Krakatoa (child of Krakatoa) has grown through ongoing volcanism where Krakatoa had existed. It’s undergoing a constructive phase of mild strombolian and vulcanian eruptions. But, there’s a little more to this story…..

  47. Could Krakatoa have been the cause of humanity’s descent into the Dark Ages? Catastrophe: An Investigation into the Origins of the Modern World, by David Keys, investigates the role of extreme climate change in a series of events in human history over the 6th and 7th centuries AD. The fall of ancient super cities. The sharp decline of ancient civilizations: Persia, Indonesia, the Nasca culture of South America, and southern Arabian civilizations. The breakup of the Roman Empire and the formation of many nation states. Restructuring that led to a new united China.

  48. This was also the first time that the Bubonic Plague spread through much of the known world. This epidemic had hit Alexandria in 541 AD after spreading from east Africa. The disease is believed to have killed 900,000 people over a 100 year period. These events all appear to be linked to a major climatic change that took place in 535 AD. A written description of the time describes a major atmospheric event: “The Sun became dark, and its darkness lasted for about 18 months. Each day, it shawn for about four hours and still this light was only a feeble shadow.”…. John of Ephesis

  49. Keys suggested that a major impact of an asteroid or comet or a major volcanic eruption might have accounted for the global climate change that led to the onset of the dark ages. No major impact structures are known to have formed over the required time so investigations focused on a volcanic eruption. Ken Wohletz of the Los Alamos National Laboratory took on a collaboration to try to find a volcanic source of such a major eruption. He summarizes some of his ideas at: http://www.ees1.lanl.gov/Wohletz/Krakatau.htm Historical evidence of calamity in both the northern and southern hemispheres suggested a near-equator eruption and his search focused on Indonesia, a major volcanic hot-spot.

More Related