240 likes | 406 Views
Evaluating an Opinion Annotation Scheme Using a New Multi-perspective Question and Answer Corpus (AAAI 2004 Spring). Veselin Stoyanov Claire Cardie Diane Litman Janyce Wiebe Dept. of Comp. Science, Cornell University Dept. of Comp. Science, Univ. of Pittsburgh. Abstract. 2 tasks:
E N D
Evaluating an Opinion Annotation Scheme Using a New Multi-perspective Question and Answer Corpus (AAAI 2004 Spring) Veselin Stoyanov Claire Cardie Diane Litman Janyce Wiebe Dept. of Comp. Science, Cornell University Dept. of Comp. Science, Univ. of Pittsburgh
Abstract • 2 tasks: • Constructing a data collection for MPQA. • Evaluating the hypothesis that low-level perspective information can be useful for MPQA. • Low-level perspective information • Corpus creation • Evaluation: • Answer probability • Answer rank • Conclusion: low-level perspective information can be an effective predictor of whether a text segment contains an answer to a question.
Introduction (1/2) • Hypothesize opinion representations will be useful for practical NLP applications like MPQA. • Multi-perspective question answering (MPQA): answer opinion-oriented question (“What is the sentiment in the Middle East towards war on Iraq?”) rather than fact-based questions (“What is the primary substance used in producing chocolate?”).
Introduction (2/2) • Goal: two-fold • Present a new corpus of multi-perspective questions and answers. • Present the results of two experiments that employ the new Q&A corpus to investigate the usefulness of the opinion annotation scheme for multi-perspective vs. fact-based question answering.
Low-Level Perspective Information (1/3) • Suggested by: Wiebe et al. (2002) • Provides: a basis for annotating opinions, beliefs, emotions, sentiment, and other private states expressed in text. • Private state: a general term used to refer to mental and emotional states that cannot be directly observed or verified. • Explicitly stated (“John is afraid that Sue might fall.”) • Indirectly expressed by the selection of words and the style of language that the speaker or writer uses (“It is about time that we end Saddam’s oppression.”) Expressive subjective elements
Low-Level Perspective Information (2/3) • Source: the experiencer of that state = the person/entity whose opinion or emotion is being conveyed in the text. • Overall source: the writer • The writer may write about the private states of other people multiple sources in a single text segment (nesting of sources: deep and complex) • “Mary believes that Sue is afraid of the dark.” • Sue is afraid of the dark Mary • Mary believes… the writer
Low-Level Perspective Information (3/3) • Annotations: • On: the text span that constitutes the private state or speech event phrase itself. • Inside: the text segment inside the scope of the private state/speech event phrase. • “Tom believes that Ken is an outstanding individual.” • Attributes: • Fact annotation: onlyfactive = yes • Opinion annotation: onlyfactive = no / expressive subjective element on inside
The MPQA NRRC Corpus • Source: U.S. foreign broadcast information service (FBIS) • Using the perspective annotation framework, Wiebe et al. (2003) have manually annotated a considerable number of documents to form the NRRC (Northeast Regional Research Center) corpus. • Interannotator agreements: • Using measure agr (a||b): the proportion of a’s annotations that were found by b. • 85% on explicit private states • 50% on expressive subjectivity • Conclusion: good agreement results indicate that annotating opinions is a feasible task.
MPQA Corpus Creation (1/3) • The creation of the question and answer (Q&A) corpus used to evaluate the low-level perspective annotations in the context of opinion-oriented (opinion) and fact-based (fact) question answering. • 98 documents, 4 topics (kyoto, mugabe, humanrights, venezuela) 19~33 documents for each topic. 270,000 documents 98 documents SMART
MPQA Corpus Creation (2/3) • Question creation: • Difficulties: • The classification associated with each question (fact/opinion) did not always seem appropriate. • “Did any prominent Americans plan to visit Venezuela immediately following the 2002 coup?” • Fact? Opinion? 2 documents on each topic & a set of instructions 15 opinion (o) & 15 fact (f) questions for each topic A volunteer
MPQA Corpus Creation (3/3) • Annotating answers: • Manually added answer annotations for each text segment in the Q&A corpus that constituted/ contributed to an answer to any question. • Attributes: topic, question number, confidence • Difficulties: • Opinionated documents often express answers to the questions only very indirectly. • It is hard even for humans to decide what constitutes an answer to a question. • It was hard for human annotators to judge what can be considered an expression of the opinion of collective entities and often the conjecture required a significant amount of background information.
Evaluation of Perspective Annotations for MPQA (1/5) • 2 different experiments to evaluate the usefulness of the perspective annotations in the context of fact- and especially opinion-based QA. • Answer probability • The # of answer segments classified as FACT & OPINION, respectively, that answer each question. • Answer rank • Determine the rank of the first retrieved sentence that correctly answers the question.
Evaluation of Perspective Annotations for MPQA (2/5) • Multiple criteria: to determine whether a text segment should be considered FACT or OPINION based on the underlying perspective annotations. • 2 association criteria: to determine which perspective annotations should be considered associated with an arbitrary text segment. • 4 classification criteria: to categorize the segment as one of FACT or OPINION. • Bias towards opinion annotations expect opinion annotations to be more discriminative
Evaluation of Perspective Annotations for MPQA (3/5) • Answer probability: • Procedure: • P(FACT/OPINION answer | fact/opinion question) Each answering Text segment Opinion / Fact Count how many fact/opinion segments answer FACT/OPINION questions Categorize Based on Criteria
Evaluation of Perspective Annotations for MPQA (4/5) • Answer rank: • Procedure: Each question as the query Run an IR algorithm divide Ranked list of sentences A set of text segments documents One of two filters to remove OPINION answers for fact questions & vice versa (opinion: overlap any fact: cover (all) ) Modified ranked list of answers Evaluation Determine the rank of the first correct (any part of it is annotated as an A to the Q) retrieved sentence
Evaluation of Perspective Annotations for MPQA (5/5) • Discussion: • Low-level perspective information can be a reliable predictor of whether a given segment of a document answers an opinion/fact question. • Low-level perspective information may be used to re-rank potential answers by using the knowledge that the probability that a fact answer appears in an OPINION segment, and vice versa, is very low. • Using filters can sometimes cause all answering segments for a particular question to be discarded unrealistic to use the FACT/OPINION segment classification as an absolute indicator of whether the segment can answer fact/opinion question.
Conclusion and Future Work • Both tasks (constructing a data collection & evaluating usefulness) provided insights into potential difficulties of the task of MPQA and the usefulness of the low-level perspective information. • Main problems: • Deciding what constitutes answer • The presence of indirect answer (expressive subjectivity) • Most answers to opinion questions have to be deduced • Low-level perspective information can be an effective predictor of whether a text segment contains an answer to a question (given the type of the question), but should NOT be used as an absolute indicator, especially in a limited number of documents.
Table 3: Answer Probability P(ANSWER|question) 120/415 A annotated for fact/opinion Q P(F|f) >> P(O|f) P(F|f) >> P(F|o) P(O|o) >> P(O|f) P(O|o) > P(F|o) Max P(F|f) Max P(O|o)
Table 4: Answer Rank Rank(overlap)<=Rank(unfilt) for opinion Q Rank(cover)<=Rank(unfilt) for fact Q Mixed at least as well as unfiltered Filter all answer segments