1 / 58

Dipion Spectrum : e + e - annihilations and τ decays

Dipion Spectrum : e + e - annihilations and τ decays. M. Benayoun LPNHE Paris 6/7. The Pion Form factor in e + e - and τ Data. Since the advent of τ data, disagreement with e + e - data

giles
Download Presentation

Dipion Spectrum : e + e - annihilations and τ decays

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Dipion Spectrum : e+e- annihilations and τ decays M. Benayoun LPNHE Paris 6/7 M. Benayoun, e+ e- versus tau

  2. The Pion Form factor in e+e- and τ Data • Since the advent of τ data, disagreementwith e+e- data • Large activity in identifying isospin symmetrybreaking in both e+e- annihilation and τdecay • Disagreementsurvivedaccounting for identified isospin breaking corrections! • Is there a missingpiece, a systematiceffect(in e+e- or τ data) or new physics? M. Benayoun, e+ e- versus tau

  3. The Latest Account • Inv. Mass dependent missing effect M. Davier NP Proc. Supp. 169 (2007) 288 M. Benayoun, e+ e- versus tau

  4. The Latest Account • Inv. Mass dependent missing effect ! Is it isospin breaking? M. Davier NP Proc. Supp. 169 (2007) 288 M. Benayoun, e+ e- versus tau

  5. Possible MissingEffect : (ρ-ω-φ) Mixing FF’s New Data Isospin 1 part of ω Isospin 1 part of φ M. Benayoun, e+ e- versus tau

  6. Possible MissingEffect : (ρ-ω-φ) Mixing FF’s New Data Isospin 1 part of ω Isospin 1 part of φ Isospin 0 part of ρ0 ? Can it be s-dependent? M. Benayoun, e+ e- versus tau

  7. OUTLINE • A VMD-like Model : HLS Model (briefly) • Breaking of U(3)/SU(3) Symmetries (briefly) • The AnomalousSector (briefly) • The Pion Form Factor in e+e- Annihilation and τDecay (Isospin Breaking) • Loop Transition Effects in e+e- :Physicalρ0, ω, ф • Extended Data Samplesubmitted to fit, Why? • Fit results & Plots • Conclusions M. Benayoun, e+ e- versus tau

  8. OUTLINE • A VMD-like Model : HLS Model (briefly) • Breaking of U(3)/SU(3) Symmetries (briefly) • The AnomalousSector (briefly) • The Pion Form Factor in e+e- Annihilation and τDecay (Isospin Brk) • Loop Transition Effects in e+e- :Physicalρ0, ω, ф • Extended Data Samplesubmitted to fit, Why? • Fit results & Plots • Conclusions M. Benayoun, e+ e- versus tau

  9. The Pion form Factor in e+e- and τPhysics • Without Symmetry Breaking : • Isospin symmetry breaking: mass splittings + W. Marciano & A. Sirlin PRL 71 (1993) 3629 V. Cirigliano G. Ecker & H. Neufeld PL B 513 (2001) 361 M. Benayoun, e+ e- versus tau

  10. The Pion form Factor in e+e- and τPhysics • Without Symmetry Breaking : • Isospin symmetry breaking : mass splittings+ HLS W. Marciano & A. Sirlin PRL 71 (1993) 3629 V. Cirigliano G. Ecker & H. Neufeld PL B 513 (2001) 361 M. Benayoun, e+ e- versus tau

  11. The Pion form Factor in e+e- and τPhysics • With Symmetry Breaking : • Isospin symmetry breaking : mass splittings + (γ/W)V ? ρππ? δm2 W. Marciano & A. Sirlin PRL 71 (1993) 3629 V. Cirigliano G. Ecker & H. Neufeld PL B 513 (2001) 361 M. Benayoun, e+ e- versus tau

  12. γ/W- ρ Transitions • No isospin breaking : • Isospin symmetry breaking : ρ± component ρI component фI and ωI components M. Benayoun, e+ e- versus tau

  13. Transitions amongvectorfieldsat one loop • Attreelevelidealfields≡mass eigenstates • At one loop, the HLS Lagrangianpiece inducestransitions amongidealfields idealfields≡mass eigenstates isospin symmetrybreaking : M. Benayoun, e+ e- versus tau

  14. Transitions amongvectorfieldsat one loop • Define the loops : = K+ K- , = K0K0 Then, beside self-masses : = + ~ ε2(s) ≠ 0 always = - ≠ 0 by isospin brk = - ~ ε1(s) VVP Lagrangian K*K loops // Yang-Mills K*K*loops f(s) M. Benayoun, e+ e- versus tau

  15. The Modified Vector Mass Matrix ρIωIφI Withm2 = a g2 fπ2 and μ= zV No SU(3) Brk :: , No SU(2) Brk :: Blue : Loopeffectsmagenta : SU(3) breakingred : isospin breaking M. Benayoun, e+ e- versus tau

  16. Loop Corrections : (ω , ф) Mixing ρIωIφI Blue : Loopeffectsmagenta : SU(3) breakingred : isospin breaking M. Benayoun, e+ e- versus tau

  17. Isospin Breaking : (ρ, ω , ф) Mixing ρIωIφI Blue : Loopeffectsmagenta : SU(3) breakingred : isospin breaking M. Benayoun, e+ e- versus tau

  18. The Mass Matrix Eigen System • Expect : • Then solve for the eigensystem perturbatively : and : M. Benayoun, e+ e- versus tau

  19. From Ideal To Physical Fields I : Real analytic matrix function fulfills Unitarity Condition M. Benayoun, e+ e- versus tau

  20. From Ideal To Physical Fields II Mass term derived from the eigenvalues of M2(s) : (Self masses include subtraction polynomials) Leading order propagators become M. Benayoun, e+ e- versus tau

  21. V π π Couplings *At leading order : ρ term unchanged *s-dependent ω and φ couplings generated M. Benayoun, e+ e- versus tau

  22. V π π Couplings Orsay Phase ≈90₀ atpeak *At leading order : ρ term unchanged *s-dependent ω and φ couplings generated M. Benayoun, e+ e- versus tau

  23. γ – V Couplings • In terms of Ideal Fields • Becomes With M. Benayoun, e+ e- versus tau

  24. Vector Meson Couplings to γ/W • (γ/W) V transitions : constant + (PP,VP…) loops = + • loop term : disp. relation (subtractions) • tree terms : M. Benayoun, e+ e- versus tau

  25. Vector Meson Coupling to γ/W • (γ/W) V transitions : constant + (PP,VP…) loops = + • loop term : disp. relation (subtractions) • tree terms : ωI andфI components of ρ0 M. Benayoun, e+ e- versus tau

  26. Parameter Freedom • If onlyusing the pion form factor (e+e-,τ) the parameterfreedomis far too large: • a (HLS), g , zA , δm2 (4) • Subtractionpolynomials in : (~ 8) Toomanyparameters, too few structures • Solution : extend the fitted data sample: more information, lesscorrelations M. Benayoun, e+ e- versus tau

  27. The Extended Data Sample • Addanomalousdecay modes VPγ, Pγγ : • Price : x, zT, zV, zA for 14 modes for free for free + 4 measured data :: Total 18 add. data M.B.,L.D. ,S.E, V.I. & H.OC, PR D 59 (1999) 114027 M.B, H.OC EPJ C22 (2001) 503 M. Benayoun, e+ e- versus tau

  28. The Main Guess • Main Guess ≈ Proof of Principle 18Decay Modes + Pion FF in e+e- annihilation • Fully reconstruct ThePion FF in τ decay (improvement of parameter fit values) M. Benayoun, e+ e- versus tau

  29. The Χ2 contributionstofits M. Benayoun, e+ e- versus tau

  30. The Χ2 contributionstofits M. Benayoun, e+ e- versus tau

  31. The Χ2 contributionstofits τ DATA OUTSIDE FIT :Χ2 distance to prediction M. Benayoun, e+ e- versus tau

  32. The Χ2 contributionstofits Spacelike data OUTSIDE FIT M. Benayoun, e+ e- versus tau

  33. Global Fit to e+e- Data FF’s New Data Cross Sections Old Data M. Benayoun, e+ e- versus tau

  34. Fits to τ Data CLEO Data ALEPH Data M. Benayoun, e+ e- versus tau

  35. Spacelike Data & ππ Phase Shift SpaceLike Data I=1 ππ Phase shift NOT A FIT M. Benayoun, e+ e- versus tau

  36. Fit Residuals : No Structure CLEO ALEPH e+e- Data M. Benayoun, e+ e- versus tau

  37. Isospin SymmetryBreaking : ρ0 VS ρ± M. Benayoun, e+ e- versus tau

  38. Isospin SymmetryBreaking : ρ0 VS ρ± 0 :: NO IS Brk Threshold : -6% ρ Peak : + 3% Φ Mass : -2% M. Benayoun, e+ e- versus tau

  39. Conclusions • No mismatchbetween e+e- and τ data • Radiative decays & pion form factor in e+e- annihilation predict the observed pion form factor in τdecay • Previouslyunaccounted for effects : I=0 (ωI, фI) components inside the ρ0 meson. • The 3.3 σdiscrepancybetweenprediction (using e+e- data) and the BNL measurement for the muon anomalous moment isconfirmed M. Benayoun, e+ e- versus tau

  40. Fit Decay Modes Vs PDG M. Benayoun, e+ e- versus tau

  41. The ρ0 - ρ± Mass Difference ALEPH Data The ρ0-ρ± Mass Difference : 1/ Only visible in ALEPH data 2/ ~1 .2 σ from ChPT δm2= 0 Fixed J. Bijnens & P. Gosdzinsky PL B 388 (1996) 203 ρPeakRegion δm2 Fitted High mass Vectormesons M. Benayoun, e+ e- versus tau

  42. Two New Results M. Benayoun, e+ e- versus tau

  43. Two New Results ~ 15 σapart starting from the same data! M. Benayoun, e+ e- versus tau

  44. Two New Results May change the global fit to ω branching ratios M. Benayoun, e+ e- versus tau

  45. Fit Of The ω Mass Region : Perfect FF’s New Data Cross Sections Old Data M. Benayoun, e+ e- versus tau

  46. Additional Information • THE MIXING « ANGLES » • The (ρ,ω) and (ρ, ф) mixing «angles» are small (wrt 1) complex numbers • The (ω, ф) mixing «angle» is real and small (wrt 1) M. Benayoun, e+ e- versus tau

  47. The (ρ, ω) Mixing «Angle» ~-4 % Real part Imag. part M. Benayoun, e+ e- versus tau

  48. The (ρ, ф) Mixing «Angle» Real Part Imag. Part M. Benayoun, e+ e- versus tau

  49. The(ω, ф) mixing «angle» Real Part Start non-zero imaginary part Imag. Part M. Benayoun, e+ e- versus tau

  50. Hadronic Photon Vacuum Polarization ω ф M. Davier et al. H. Burkhardt Photon Hadronic VP s (GeV2) Full Correction Factor (Hadr. & Lept.) s (GeV2) M. Benayoun, e+ e- versus tau

More Related