1 / 2

§9-3 两曲面立体相贯

一、概述. 两曲面立体的相贯线为封闭的空间曲线。 由于相贯线既属于甲立体表面,同时又属于乙立体表面,是两立体表面的共有线。为此,求相贯线的实质是求两立体表面上的一系列共有点,然后依次光滑地相连,并判别可见性,描深。. §9-3 两曲面立体相贯. 返 回. 二、 利用积聚性投影求相贯线. 三、 辅助面法求相贯线. 上一节. 四、 复合相贯线. 五、 相贯线的特殊情况及相贯线投影的趋势. 下一节. 退 出. 两曲面立体相交.

Download Presentation

§9-3 两曲面立体相贯

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 一、概述 两曲面立体的相贯线为封闭的空间曲线。 由于相贯线既属于甲立体表面,同时又属于乙立体表面,是两立体表面的共有线。为此,求相贯线的实质是求两立体表面上的一系列共有点,然后依次光滑地相连,并判别可见性,描深。 §9-3 两曲面立体相贯 返 回 二、利用积聚性投影求相贯线 三、辅助面法求相贯线 上一节 四、复合相贯线 五、相贯线的特殊情况及相贯线投影的趋势 下一节 退 出

  2. 两曲面立体相交

More Related