1 / 38

Ch 2 Les indices

Ch 2 Les indices. Un indice est un outil de comparaison, comparaison dans le temps ou dans l'espace. 3 types d'indices :  les indices élémentaires  une seule grandeur (grandeur simple ) Ex  : Indice du SMIC les indices synthétiques  variation d'une grandeur complexe

gina
Download Presentation

Ch 2 Les indices

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Ch 2 Les indices • Un indice est un outil de comparaison, comparaison dans le temps ou dans l'espace. • 3 types d'indices : •  les indices élémentaires une seule grandeur (grandeur simple) Ex : Indice du SMIC • les indices synthétiques variation d'une grandeur complexe Ex : Indice des salaires IPC Indices boursiers • les indices composites évolution de l'ens. d'un domaine éco. Ex : Indice général d'activité d'une branche industrielle • Dans ce chapitre : • Indices composites laissés de côté • Examen des indices synthétiques • Avant cela, rappel des propriétés des indices élémentaires. On considérera le cas d'indices temporels. Mais même chose pour les indices spatiaux.

  2. I. Les indices élémentaires On considère la grandeur x observée à ≠ dates (0, 1, …, n). Il exprime la variation de x entre la date 0 et la date t. • Dans cette partie, examen des propriétés des indices élémentaires. I.1. L’identité Propriété totalement évidente : avec t quelconque. : indice de la grandeur x en t, base 100 en 0

  3. I.2. La transitivité ou “circularité” ou “transférabilité” Soit une grandeur observée en 3 dates (0, 1, 2), la transitivité de l'indice se traduit par : Généralisation Soit une grandeur observée aux dates (0, …, n), on a (date de fin – date de départ) - 1

  4. 2 remarques • Propriété de transitivité  indices enchaînables • Un indice obtenu par raccordement d’indices successifs est appelé “indice-chaîne”. • Chaque indice intermédiaire constitue un “maillon”. • Avantage : permet d'exprimer les indices successifs dans la même base. Ex :Tableau 1.2ddu ch. 1  Inconvénient : Les erreurs de calcul sur un maillon se répercutent sur la chaîne.

  5. Propriété de transitivité  Pour n'importe quelles datest et t', on a Cette équation donne la formule permettant d'opérer un changement de base.  Ce qu’on veut faire : transformer les indices base 100 en 1980 en indices base 100 en 2000 Il suffit de diviser chq indice par l'indice pour 2000 (base 100 en 80) et de multiplier le résultat par 100.

  6. I.3. La réversibilité Se déduit des propriétés d'identité et de transitivité. I.4. Propriété de l’indice d’un produit L'indice élémentaire d'un produit est égal au produit des indices élémentaires. Soient les variables x et y,

  7. On parle de “réversibilité par rapport aux facteurs(I. Fisher).  Propriété très intéressante, notamment quand les variables considérées sont le prix (p) et la quantité (q). prix x quantité = valeur  Indice de valeur = ind. de prix x ind. de quantité On peut ainsi passer d'une évolution en volume à une évolution en valeur - et réciproquement.

  8. Evolution de la fréquentation = évolution en volume Evolution des recettes = évolution en valeur • On peut en déduire l’évolution du prix de l’entrée. Raisonnons en indices : i.e. augmentation de 1% du prix d’entrée entre 05 et 06.

  9. Q° de révision du ch. précédent : • De quel pourcentage la fréquentation a-t-elle varié entre 2003 et 2006 ? Et les recettes ? Réponses : +8,8% pour la fréquentation, +12,3% pour les recettes. • De quel pourcentage la fréquentation a-t-elle varié par an, en moyenne, sur la période 2003-06 ? Et les recettes ? Réponses : +2,8% pour la fréquentation, +4% pour les recettes. • Sachant que le nb d'entrées s'élevait en 06 à 188,67 millions, combien y a-t-il eu de spectateurs en 02 ? Réponses : 184,4 millions. Pour le mode d’obtention des résultats,voir la feuille ‘Q° tableau 2.2’ du fichier Excel des tableaux du ch. 2 sur l’EPI.

  10. II. Les indices synthétiques Ils sont utilisés pour comparer, dans le temps ou dans l'espace, les valeurs prises par une grandeur complexe. Ex de grandeur complexe : la consommation des ménages Cf. tableau 2.3 • Considérons une grandeur complexe X constituée de k grandeurs "simples" : X = {x1, x2,…, xk}. • On s'intéresse à 2 caractéristiques des xi : • leurs prix{p1, p2,…, pk} et • les quantités achetées {q1, q2,…, qk} à 2 dates différentes, 0 et n. • On notera pi0 le prix de la grandeur i à la date 0, pin : son prix à la date n, qi0 la quantité achetée en 0, qin : la quantité achetée en n

  11. On cherche à rendre compte de l'évolution de la grandeur complexe X entre 2 dates, de l'évolution de “son prix” et de celle de “sa quantité”. • On peut raisonner sur la dépense globale. On calculera l’indice de valeur en n, base en 0 : Il renseigne sur la ∆° de la dépense globale entre 0 et n. Mais il ne dit rien sur les causes de cette variation. Variation des prix ? Des quantités ? Des 2 à la fois ? Pour quelles parts ?

  12. Pour différencier effet-prix et effet-quantité, on va considérer comme fixe l’une des 2 variables(prix ou quantité). Q° : A quel niveau figer les prix ou les quantités ? A leur niveau en 0 ? à leur niveau en n ? ou à leur niveau à une date intermédiaire ? II.1. Principe de construction des indices synthétiques • Si l’on s’intéresse à la variation desprix de l'ensemble des biens considérés entre 0 et n, on va raisonner à structure de consommation donnée, i.e. on fixe les quantités consommées au niveau atteint à une certaine date t (quantités q1t, q2t,…qit , ..., qkt).

  13. Variation des prix entre 0 et n mesurée par l'indice : i.e. l'ind. des prix est obtenu en pondérant le prix de chaque bien par la quantité consommée de ce bien en t. • De même, si l’on s’intéresse à la variation desquantités consommées entre 0 et n, on raisonnera à structure de prix donnée. • Variation des quantités entre 0 et n mesurée par l'indice : • i.e. l'ind. des quantités est obtenu en pondérant la quantité de chaque bien par son prix mesuré en t.

  14. C'est par le choix de la date de référence t que se distinguent les 2 indices synthétiques les plus courants, l'indice de Laspeyres et l'indice de Paasche : • Laspeyres Choix de la date de départ (i.e. t =0), • Paasche Choix de la date d'arrivée (i.e. t =n). II.2. L’indice de Laspeyres Indice rétrospectif II.2.1. L’indice des prix de Laspeyres ce qu’auraient coûtéen n les quantitésconsommées en 0 ce qu’ont coûté en 0les qu. consommées en 0

  15. Ex  Mesurée avec un indice de Laspeyres, l’évolution du prix des viennoiseries est de + 17,5% entre 0 et 1 et de + 35% entre 0 et 2, + 15,6% entre 1 et 2. Q° : Quelle formule doit-on utiliser pour calculer L1/0(p) et pour obtenir L2/0(p) par simple recopie vers le bas ? Rép : =100*(E6*C$5+F6*D$5)/(E$5*C$5+F$5*D$5)

  16. Autre expression de l'indice des prix de Laspeyres : On peut le calculer à partir  des indices de prix élémentaires et • des coefficients budgétaires. Indice élémentaire du prix du bien ien n base en 0 : Coef. budgétaire du bien i en 0 : • Cf.Tableau 2.3

  17. Ex

  18. L'indice des prix de Laspeyres en n, base en 0, se réécrit de la façon suivante : i.e. moyenne arithmétique des indices élémentaires de prix en n, base en 0, pondérée par les coefficients budgétaires à la date 0.

  19. Ex Q° : La formule utilisée pour calculer L1/0(p) est =G6*E7+H6*F7 Que donne-t-elle si on la recopie vers le bas ? • La formule devient =G7*E8+H7*F8 • A quoi correspond-elle ? • A rien. En particulier, elle ne donne pasL2/1(p). Pour calculer cet indice, il faudrait connaître les indices élémentaires de prix en 2 base 100 en 1. On peut les déduire des indices base 100 en 0 : I2/1(p) = 100x I2/0(p)/ I1/0(p) = 120 pour les croissants, 109,1 pour les brioches On a alors L2/1(p) = 0,6x120 + 0,4x109,1 = 115,6.

  20. II.2.2. L’indice des quantités de Laspeyres ce qu’auraient coûtéen 0 les quantitésconsommées en n ce qu’ont coûté en 0les qu. consommées en 0 • Autre expression de l'indice des quantités de Laspeyres à partir • des indices de quantité élémentaires et • des coefficients budgétaires. i.e. moyenne arithmétique des indices élémentaires de quantité en n, base en 0, pondérée par les coef. budgétaires à la date 0.

  21. Ex Q° : Quelle formule permet de calculer L1/0(q) et d’obtenir L2/0(q) par simple recopie vers le bas • à partir des données brutes ? • à partir des ind. élém. et des CB ? Rép a.=100*(E$5*C6+F$5*D6)/(E$5*C$5+F$5*D$5) ou =100*SOMMEPROD(E$5:F$5;C6:D6)/SOMMEPROD(E$5:F$5;C$5:D$5) b.=G$17*C18+H$17*D18 ou =SOMMEPROD(G$17:H$17;C18:D18)

  22. II.3. L’indice de Paasche ce qu’ont coûté en n les quantitésconsommées en n Indice prospectif II.3.1. L’indice des prix de Paasche • Autre expression de l'indice des prix de Paasche à partir des indices de prix élémentaires et des coef. budgétaires : i.e. moyenne harmoniquedes indices élémentaires de prix en n, base en 0, pondérée par les coef. budgétaires à la date n. ce qu’auraient coûté en 0les qu. consommées en n

  23. ce qu’ont coûtéen n les quantitésconsommées en n II.3.2. L’indice des quantités de Paasche ce qu’auraient coûté en nles qu. consommées en 0 • Autre expression de l'indice des quantités de Paasche à partir des ind. de quantité élémentaires et des coef. budgétaires. i.e. moyenne harmonique des indices élémentaires de quantité en n, base en 0, pondérée par les coef. budgétaires à la date n.

  24. Ex :Calcul d’indices de Paasche à partir des données brutes

  25. Ex :Calcul d’indices de Paasche à partir des indices élémentaires et des coef. budgétaires

  26. II.4. Comparaison des indices de Laspeyres et de Paasche • Le calcul d'une série d'indices de Paasche demande plus de données que celui d'une série d'indices de Laspeyres (dans la même base). • Paasche Les pondérations changent à chaque nouvelle date considérée (t+1, t+2…) • Laspeyres Pondérations fixes (pondération par les valeurs à la date de base) • Les calculs de Laspeyres et de Paasche aboutissent à des valeurs différentes. 2 explications : • Type de moyenne utilisé (Cf. relation d’ordre entre les moyennes vue au ch. précédent) • Situation de référence choisie Ex. de M.L. Levy ("Les indices", Cahiers Français, mars-avr 1988)

  27. Illustration : La mesure de l’inflation • Si l’indice des prix à la consommation est • un indice de Laspeyres, surestimation de l’inflation (biais de substitution) • un indice de Paasche, sous-estimation. • En France, l’IPC utilisé pour mesurer l’inflation est un indice de Laspeyres. Mais les pondérations sont actualisées tous les ans par l’INSEE. • Enjeu socio-économique de l’IPC : il sert à indexer un certain nombre de revenus. Indexer un revenu sur l’IPC = revaloriser ce revenu en fonct° de l’évol° de l’indice de sorte que son pouvoir d’achat soit préservé. Pour déterminer l’évol° du pouvoir d’achat d’un revenu (i.e. évol° durevenu réel), on rapporte la ∆° du revenu nominal à la ∆° des prix.

  28. Tableau 2.5 De 06 à 07, le Smic horaire brut a augmenté de 2,1%, i.e. a été multiplié par 1,021 alors que l’IPC (hors tabac) a augmenté de 1,3%, i.e. a été multiplié par 1,013. Entre 06 et 07, le pouvoir d’achat du Smic horaire brut a donc été multiplié par 1,021/1,013 = 1,007, i.e. a augmenté de 0,7%. De 07 à 08, le Smic horaire brut a varié comme l’IPC (+3,2%). • Le pouvoir d’achat du Smic horaire brut n’a donc pas évolué entre 07 et 08. Rq sur IPC utilisé (ménages urbains, chef ouvrier ou employé)

  29. III. Propriétés des indices synthétiques Propriété d’identité : oui Mais aucune des 3 autres propriétés vues au Isupra. III.1. Les indices de L. et de P. ne sont pas transitifs Considérons le cas d’un Laspeyres des prix. Même chose pour les autres indices.  Cette non-transitivité (ou non-transférabilité) des indices de L. et de P. pose un pb pour leur raccordement en cas de changement de base.

  30.  Illustration avec l’IPC (indice de Laspeyres) • Depuis 1970, l'INSEE actualise les pondérations tous les ans. • Les indices de prix sont publiés dans une base commune, actuellement la base 1998. • Comment exprimer les indices successifs dans une même base (base 1998) ? Comme les indices de Laspeyres ne sont pas transférables, L99/98x L00/99ne donne pasL00/99x 100 (par exemple). • La solution retenue par l'INSEE est de faire comme si les indices étaient transférables. Les indices publiés par l'INSEE qui sont exprimés dans une base commune sont des indices de Laspeyres chaînés. Ce ne sont pas de “vrais” indices de Laspeyres, ce sont des chaînes de Laspeyres.

  31. Par ex., l'indice fourni par l'INSEE pour rendre compte de l'évolution des prix à la C° entre 1998 et 2007 est un indice-chaîne de Laspeyres (ou Laspeyres chaîné, noté LC) obtenu en multipliant 9 maillons successifs : Inconvénients des indices-chaînes : oConservent les éventuelles erreurs de calcul faites sur un maillon. oSurtout, leur significat° éco. est floue.  Intérêt : oIntègrent les modifications successives => Atténuent le biais de substitut° (cf. supra). o Par construction, les indices-chaînes sont transférables. Même chose pour les indices de Paasche

  32. III.2. Les indices de L. et de P. ne sont pas réversibles Ni par rapport aux situations considérées, ni par rapport aux facteurs. III.2.1. Non-réversibilité par rapport aux situat° considérées Mais on constate que le dénominateur est égal à Pn/0(p) / 100. On a donc De même,

  33. Par suite, si on multiplie un indice de Laspeyres par un indice de Paasche, on obtient un indice réversible par rapport aux situations considérées. • Indice de Fisher : moyenne géométrique des indices de Laspeyres et de Paasche : Indice assez complexe à calculer ; peu utilisé.

  34. III.2.2. Non-réversibilité par rapport aux facteurs Le Laspeyres d'un produit n'est pas égal au produit de Laspeyres. Idem pour Paasche. Considérons le produit pxq. Produit des Laspeyres des prix et des quantités : • Laspeyres du produit : On voit immédiatement que les 2 ne correspondent pas.

  35. Mais on montre très facilement que l'indice de valeur peut s'écrire comme le produit croisé d'indices de Laspeyres et de Paasche : • 2 décompositions de la variation en valeur, 2 évaluations différentes de l'effet-prix et de l'effet-quantité Ex : Tableau 2.4  L2/0(p). P2/0(q) / 100 = 135,0 x 166,7 / 100 = 225,0 i.e. l’augm° en valeur de 125% se décompose en une augm° des prix de 35% et une augm° des quantités de 66,7%.  P2/0(p). L2/0(q) / 100 = 138,5 x 162,5 / 100 = 225,0 i.e. l’augm° en valeur de 125% se décompose en une augm° des prix de 38,5% et une augm° des quantités de 62,5%.

  36. III.3. Les indices de L. et de P. sont agrégeables En tant que moyenne arithmétique dans un cas, harmonique dans l'autre, les indices de Laspeyres et de Paasche possèdent la propriété d'agrégation. Ex Propriété d’agrégation  L’indice des prix de Laspeyres de l’ensemble du poste “Habillement et chaussures” s’obtient à partir des ind. de Laspeyres de chaque catégorie. Il est égal à leur moyenne arithmétique pondérée, pondérat° par la part de chq catégorie dans le budget “H&C”. Lsept08(prix H&C) = 0,808x104,5 + 0,192x110,2 = 105,6

  37. PLAN du chapitre I. Les indices élémentaires I.1. L’identité I.2. La transitivité I.3. La réversibilité I.4. Propriété de l’indice d’un produit II. Les indices synthétiques II.1. Principe de construction des indices synthétiques II.2. L’indice de Laspeyres II.2.1. L’indice des prix de Laspeyres II.2.2. L’indice des quantités de Laspeyres II.3. L’indice de Paasche II.3.1. L’indice des prix de Paasche II.3.2. L’indice des quantités de Paasche II.4. Comparaison des indices de Laspeyres et de Paasche

  38. III.Les propriétés des indices synthétiques III.1. Les indices de L. et de P. ne sont pas transitifs III.2. Les indices de L. et de P. ne sont pas réversibles III.2.1. Non-réversibilité par rapport aux situations considérées III.2.2. Non-réversibilité par rapport aux facteurs III.3. Les indices de L. et de P. sont agrégeables

More Related