370 likes | 600 Views
实验二 质粒 DNA 的酶切鉴定 及琼脂糖凝胶电泳. 1. 实验目的和要求 学习和掌握限制性内切酶的特性、酶解和琼脂糖凝胶电泳的操作方法,并理解限制性内切酶是 DNA 重组技术的关键工具,琼脂糖凝胶电泳是分离鉴定 DNA 片段的有效方法。. 2. 相关基础知识 限制性核酸内切酶:是一类能识别双链 DNA 分子特异性核酸序列的 DNA 水解酶。是体外剪切基因片段的重要工具,所以常常与核酸聚合酶、连接酶以及末端修饰酶等一起称为工具酶。限制性核酸内切酶不仅是 DNA 重组中重要的工具,而且还可以用于基因组酶切图谱的鉴定。. 1) 寄主控制的限制与修饰现象
E N D
实验二 质粒DNA的酶切鉴定 及琼脂糖凝胶电泳
1. 实验目的和要求 学习和掌握限制性内切酶的特性、酶解和琼脂糖凝胶电泳的操作方法,并理解限制性内切酶是DNA重组技术的关键工具,琼脂糖凝胶电泳是分离鉴定DNA片段的有效方法。
2. 相关基础知识 限制性核酸内切酶:是一类能识别双链DNA分子特异性核酸序列的DNA水解酶。是体外剪切基因片段的重要工具,所以常常与核酸聚合酶、连接酶以及末端修饰酶等一起称为工具酶。限制性核酸内切酶不仅是DNA重组中重要的工具,而且还可以用于基因组酶切图谱的鉴定。
1) 寄主控制的限制与修饰现象 2) 核酸限制性内切酶的类型 3) 核酸限制性内切酶的基本特性 4) 同裂酶和同尾酶 5) 核酸限制性内切酶的命名法 6) 影响核酸限制性内切酶活性的因素
1) 寄主控制的限制与修饰现象 限制与修饰系统是细胞的一种防卫手段。 各种细菌都能合成一种或几种能够切割DNA双链的核酸内切酶,它们以此来限制外源DNA存在于自身细胞内,但合成这种酶的细胞自身的DNA不受影响,因为这种细胞还合成了一种修饰酶,对自身的DNA进行了修饰,限制性酶对修饰过的DNA不能起作用。这种现象被称为寄主控制的限制与修饰现象。
2)限制性核酸内切酶的类型及特性 按限制酶的组成、与修饰酶活性关系以及切断核酸的情况不同,分为三类: Ⅰ型 Ⅱ型* Ⅲ型
第二类(II型)限制性内切酶能识别专一的核苷酸顺序,并在该顺序内的固定位置上切割双链。由于这类限制性内切酶的识别和切割的核苷酸都是专一的。因此,这种限制性内切酶是DNA重组技术中最常用的工具酶之一。这种酶识别的专一核苷酸顺序最常见的是4个或6个核苷酸,少数也有识别5个核苷酸以及7个、8个、9个、10个和11个核苷酸的。 II 型限制性内切酶的识别顺序是一个回文对称顺序,即有一个中心对称轴,从这个轴朝二个方向“读”都完全相同。这种酶的切割可以有两种方式:
粘性末端;是交错切割,结果形成两条单链末端,这种末端的核苷酸顺序是互补的,可形成氢键,所以称为粘性末端。粘性末端;是交错切割,结果形成两条单链末端,这种末端的核苷酸顺序是互补的,可形成氢键,所以称为粘性末端。 如EcoRI的识别顺序为: 5’…… G’AA|TT_C ……3’ 3’…… C_TT|AA’G …… 5’ 垂直线表示中心对称轴,从两侧“读”核苷酸顺序都是GAATTC或CTTAAG,这就是回文顺序(palindrome)。_和‘表示在双链上交错切割的位置,切割后生成5’……G和AATTC……3’、3’……CTTAA和G……5’二个DNA片段,各有一个单链末端,二条单链是互补的,其断裂的磷酸二酯键以及氢键可通过DNA连接酶的作用而“粘合”。
平头末端: II型酶切割方式的另一种是在同一位置上切割双链,产生平头末端。例如EcoRV 的识别位置是: 5’…… GAT’|ATC …… 3’ 3’…… CTA’|TAG …… 5’ 切割后形成5’…… GAT和ATC …… 3’、 3’…… CTA和TAG …… 5’。这种末端同样可以通过DNA连接酶连接起来。
第三类( III型)限制性内切酶也有专一的识别顺序,但不是对称的回文顺序,在识别顺序旁边几个核苷酸对的固定位置上切割双链。但这几个核苷酸对不是特异性的。因此,这种限制性内切酶切割后产生的一定长度DNA片段,具有各种单链末端。因此不能应用于基因克隆。
3) 同裂酶和同尾酶: 同裂酶: 有时两种限制性内切酶的识别核苷酸顺序和切割位置都相同,其差别只在于当识别顺序中有甲基化的核苷酸时,一种限制性内切酶可以切割,另一种则不能。例如HpaⅡ和MspⅠ的识别顺序都是5’……G’CG_G……3’,如果其中有5’-甲基胞嘧啶,则只有HpaⅡ能够切割。这些有相同切点的酶称为同裂酶(同切酶或异源同工酶)。
同尾酶: 有时两种酶切割序列不完全相同,但却能产生相同的粘性末端,这类酶被称为同尾酶,可以通过DNA连接酶将这类末端连接起来,但原来的酶切位点将被破坏,有时可能会产生一个新的酶切位点。如Xba1、Nhe1、Spe1以及Styl切割的DNA序列不同,但均给出相同的“CTAG”粘性末端。这些粘性末端连接后,以上的酶将不能再切割,但却产生了一个新的4核苷酸的酶切位点,即 Bfa1的酶切位点。
4) 限制性核酸内切酶的命名法 • 用属名的头一个字母和种名的头两个字母表示寄主菌的物种名称,如E. coli用Eco表示,所以用斜体字。 • 用一个字母代表菌株或型,如流感嗜血菌Rd菌株用d,即Hind。 • 如果一种特殊的寄主菌株,具有几个不同的限制与修饰体,则以罗马数字表示,如HindⅠ, HindⅡ,HindⅢ等。
5) 影响核酸限制性内切酶活性的因素 (1) DNA的纯度; (2) DNA的甲基化程度; (3) 酶切消化反应的温度; (4) DNA的分子结构; (5) 溶液中离子浓度及种类; (6) 缓冲液的 pH值。
琼脂糖凝胶电泳 琼脂糖凝胶电泳是利用琼脂糖溶化再凝固后能形成带有一定孔隙的固体基质的特性,其密度取决于琼脂糖的浓度。在电场的作用下及中性pH的缓冲条件下带负电的核酸分子就可以向阳极迁移。 影响DNA在琼脂糖中迁移率的因素:DNA分子的大小、DNA的构象、电压、电场方向、碱基组成、嵌入的燃料以及电泳缓冲液的组成。
琼脂糖凝的浓度影响给定大小的线状DNA的迁移率,因此采用不同浓度的凝胶可以分离不同大小范围的DNA片段。0.8%的琼脂糖凝胶能很好地分辨1-25kb的片段;0.5% 的琼脂糖凝胶用于分辨较大片段的DNA (20-100kb);对于小片段的DNA(0.2-2kb) 可用1.5%或更高浓度的凝胶进行分离。不过,以上这些并不是绝对的,因为有时我们需要同时分离多种分子量相差较大的片段,因此所用琼脂糖凝胶的浓度要视情况而定。
EB:即3,8-二氨基-5-乙基-6-苯基菲锭溴盐, (Ethidium Bromide)。它能够插入DNA分子中的碱基对之间而与DNA结合。由于EB分子的插入,在紫外光的照射下,凝胶电泳中的DNA条带呈现出红色荧光,易于检测。可以检测10ng 的DNA。 注意:EB是一种诱变剂,操作时一定要注意安全操作,必须戴塑料或乳胶手套。
3. 实验材料与仪器 • 质粒 pCMV-Myc-T10 • NEB 标准分子量片段(1kb DNA Ladder) • EcoR1 和 Xho1 核酸内切酶(Takara) • EcoR 1和Xho 1酶解缓冲液(10×H buffer) • 琼脂糖 • TBE或TAE缓冲液(10×) • 溴化乙啶染色液(10mg/ml) • 上样液(6×):0.25% 溴酚兰,40%(W/V)蔗糖 水溶液或30%的甘油。
EcoR1 Insert 1.9kb Xho1 质粒
片段 碱基对 质量 1 10,002 42 ng 2 8,001 42 ng 3 6,001 50 ng 4 5,001 42 ng 5 4,001 33 ng 6 3,001 125 ng 7 2,000 48 ng 8 1,500 36 ng 9 1,000 42 ng 10a 517 42 ng* 10b 500 42 ng* 1 kb DNA Ladder不能对DNA质量进行精确定量分析,但可以通过与相近的条带进行比较估算出大概的数据。每条带大概的量如下(按0.5μg上样量计。应按12条带计算,因为3kb的量是其它片段量的近三倍):
EcoR I 酶切位点:G'AATT_C Xho I 酶切位点:C'TCGA_G 10×H buffer: 500mM Tris-HCl(pH7.5) 100mM MgCl2 10mM Dithiothreitol 1000mM NaCl
酶活性的定义: 一个活性单位(U),是指在50l反应体系中,37oC的条件下,经过1小时的反应时间,将1g DNA 完全酶解所需要的酶量。 因为不同的酶所要求的最适反应条件不同,所以一定要使用与酶相匹配的缓冲系统。一般按照销售酶的公司所提供的相应缓冲液。双酶切或多酶切时要考虑相容性缓冲液问题,一般公司会给用户提供这方面的信息。
电泳仪,电泳槽,紫外透射仪,凝胶成像仪,一次性塑料手套等电泳仪,电泳槽,紫外透射仪,凝胶成像仪,一次性塑料手套等
1) 质粒DNA的酶解(自提质粒pCMV-Myc-T10) * 缓冲液随不同的酶而不同,本实验用 H buffer。 置于37℃水浴酶解0.5-1小时。酶解完成后,分别加入10l 3倍的上样缓冲液, 然后各取15l进行电泳分析。
2) 琼脂糖凝胶的制备 琼脂糖凝胶液的制备:称取0.8g琼脂糖,置于三角瓶中,加入100ml TBE或TAE工作液,瓶口倒扣一个小烧杯等,将该三角瓶置于微波炉加直至琼脂溶解。
3)胶板的制备 取有机玻璃内槽,洗净、晾干;取纸胶条(宽约1cm),将有机玻璃内槽置于一水平位置模具上,放好梳子。
将冷却至65℃左右的琼脂糖凝胶液,小心地倒在有机玻璃内槽上,控制灌胶速度和量,使胶液缓慢地展开,直到在整个有机玻璃板表面形成均匀的胶层。将冷却至65℃左右的琼脂糖凝胶液,小心地倒在有机玻璃内槽上,控制灌胶速度和量,使胶液缓慢地展开,直到在整个有机玻璃板表面形成均匀的胶层。 室温下静置30min左右,待凝固完全后,轻轻拔出梳子,在胶板上即形成相互隔开的上样孔。制好胶后将铺胶的有机玻璃内槽放在含有0.5-1×TAE(Tris-乙酸)或TBE(Tris-硼酸)工作液的电泳槽中使用。
4)加样 用微量加样器将上述样品分别加入胶板的样品孔内。每加完一个样品,换一个加样头。加样时应防止碰坏样品孔周围的凝胶面以及穿透凝胶底部,本实验样品孔容量约15~20 l。 1 kb DNA ladder(共10条带): 在第一个上样孔或最后一个上样孔内加入6l 的 1 kb DNA ladder(50ng/l )。
5)电泳(带上手套操作) • 加完样后的凝胶板即可通电进行电泳; • 建议在80~100V的电压下电泳; • 当溴酚兰移动到距离胶板下沿约1cm处停止电泳; • 将凝胶放入溴化乙啶(EB〕工作液(0.5g/ml左右)中染色约20min。
为了获得电泳分离DNA片段的最大分辨率,电场强度不应高于5V/cm(两电极间的距离)。电泳温度视需要而定,对大分子的分离,以低温较好,也可在室温下进行。在琼脂糖凝胶浓度低于0.5%时,由于胶太稀,最好在4℃进行电泳以增加凝胶硬度。为了获得电泳分离DNA片段的最大分辨率,电场强度不应高于5V/cm(两电极间的距离)。电泳温度视需要而定,对大分子的分离,以低温较好,也可在室温下进行。在琼脂糖凝胶浓度低于0.5%时,由于胶太稀,最好在4℃进行电泳以增加凝胶硬度。
6)观察与拍照 在紫外灯(310nm波长)下观察染色后的凝胶。DNA存在处显示出红色的荧光条带。紫外光激发30s左右,肉眼可观察到清晰的条带。在紫外灯下观察时,应戴上防护眼镜或有机玻璃防护面罩,避免眼睛遭受强紫外光损伤。拍照电泳图谱时,可采用快速凝胶成象系统。
对于未进行酶切的质粒来说,常会出现两条电泳带,一条是(松弛)螺旋状质粒DNA带,另一条是超螺旋状质粒DNA的带,以超螺旋状质粒DNA居多,移动速度也最快。有时还会出现三条带,其中一条是因为有一些质粒DNA在提取过程中遭到损伤而线性化,其移动速度介于螺旋状和超螺旋状质粒DNA之间,所以该条电泳带也位于上述两种带之间。如果提取的质粒很好时,这条带会很弱,有时看不到。对于未进行酶切的质粒来说,常会出现两条电泳带,一条是(松弛)螺旋状质粒DNA带,另一条是超螺旋状质粒DNA的带,以超螺旋状质粒DNA居多,移动速度也最快。有时还会出现三条带,其中一条是因为有一些质粒DNA在提取过程中遭到损伤而线性化,其移动速度介于螺旋状和超螺旋状质粒DNA之间,所以该条电泳带也位于上述两种带之间。如果提取的质粒很好时,这条带会很弱,有时看不到。
Relaxed circle Linearized form Super-coiled form
本实验所用质粒pCMV-Myc-T10经EcoR1单酶切后应为5.7kb;用EcoR1和Xho1双酶切后应产生两条DNA片段,一条是3.8kb,另一条是1.9kb(如下图)。本实验所用质粒pCMV-Myc-T10经EcoR1单酶切后应为5.7kb;用EcoR1和Xho1双酶切后应产生两条DNA片段,一条是3.8kb,另一条是1.9kb(如下图)。 EcoRI&XhoI DNA Marker EcoRI 6.0 5.7 3.8 3.0 2.0 1.9