940 likes | 1.09k Views
6.5 Infravörös színképek. Rezgési átmenetek: Az infravörös tartományba esnek l =2-100 mm. Spektrum ábrázolása: Vízszintes tengelyen l helyett hulllámszám ( n * [cm -1 ]) Értéke 4000-400 cm -1 Függőleges tengelyen intenzitás abszorbancia transzmittancia
E N D
Rezgési átmenetek: Az infravörös tartományba esnek l=2-100 mm. Spektrum ábrázolása: Vízszintes tengelyen l helyett hulllámszám (n* [cm-1]) Értéke 4000-400 cm-1 Függőleges tengelyen intenzitás abszorbancia transzmittancia Minta: gáz, folyadék, oldat, szilárd anyag.
Kristályos acetanilid infravörös színképe KBr pasztillában
Az infravörös spektroszkópia alkalmazásai • A molekulákban a funkciós csoportok azonosítása (karakterisztikus frekvenciák alapján) • Vegyületek azonosítása („ujjlenyomat”) • Többkomponensű elegyek elemzése GC-IR technikával • Anyagminták és biológiai rendszerek vizsgálata IR mikroszkóppal
A Fourier-transzformáció (matematikai összefoglaló) Fourier-transzformáció továbbiakban FT. Két függvényt kapcsol össze, amelyek független változóinak dimenziói egymással reciprok viszonyban vannak. Például: idő-frekvencia Inverz FT: visszaállítja az eredeti függvényt.
Legegyszerűbb változat: Fourier-sor Példa: sin függvény. Időtartományban: Frekvenciatartományban: Egyetlen frekvencia jellemzi: no=1/T és egyetlen amplitúdó, A.
Legegyszerűbb változat: Fourier-sor Időtartományban: Példa: cos függvény. Frekvenciatartományban: Egyetlen frekvencia jellemzi: no=1/T és egyetlen amplitúdó, B.
Periodikus függvények Fourier sora Mindegyik periodikus függvény felírható sin és cos függvényekből álló sorként. Szimmetrikus (páros) periodikus függvények sora: Antiszimmetrikus (páratlan) periodikus függvények sora: Aszimmetrikus(sem páros, sem páratlan) periodikus függvények sora:
Együtthatók: no = a T periódusidő reciproka. A Fourier-sor tagjainak periódusideje T, T/2, T/3 stb. (felhangok)
Fourier-sor felírása Euler-formulával C(k) a komplex együttható: f(k): fázisszög
függvény Példa: Időtartományban: Frekvenciatartományban:
függvény Példa: Frekvenciatartományban: Ha T nő , no =1/T csökken, a vonalak sűrűsödnek. Határesetben a függvény nem periodikus, no = 0, a vonalak végtelen sűrűn helyezkednek el, azaz folytonos függvényt adnak. Az összegzést integrálás váltja fel.
Inverz Fourier-transzformáció (Frekvenciatartományból időtartományba transzformálás)
Fourier-transzformáció (Időtartományból frekvenciatartományba transzformálás)
Interferogram: Spektrum:
Born-Oppenheimer közelítés után a modell: magokat rögzítjük, ezek terében röpködnek az elektronok.
Schrödinger-egyenlet : elektronok kinetikus energiája : potenciális energiák : elektronok és magok vonzása : elektronok közötti taszítás : nem operátor, a magok rögzítése miatt konstans. : elektron energiája
Ezt a differenciál egyenletet nem lehet analitikusan megoldani, csak közelítő módszerrel (numerikusan).
A variációs elv. Iterációs eljárás. : kiindulási hullámfüggvény : közelítő energia alapállapotban
Ha egybeesik a keresett -lal E’=Eo. • Az összes többi -vel kapott E’>Eo-nál. : a hullámfüggvény alapállapotban Eo : alapállapotú energia.
7.2 Az LCAO-MO módszer MO: molecular orbital - molekulapálya LCAO : linear combination of atomic orbitals - az atompályák lineáris kombinációja
A közelítő hulllámfüggvényt Slater-determináns alakjában vesszük fel Egy sor: egy elektron Egy oszlop: egyféle hullámfüggvény Kvantumszámok nincsenek, de spin az van.
Lineáris kombináció A molekulapályákat úgy állítjuk elő, hogy atompályákat kombinálunk lineárisan. Jól használható molekulapályákat kapunk, ha olyan atompályákat kombinálunk, a.) amelyeknek energiája nem túl távoli b.) amelyek számottevő mértékben átfednek c.) amelyeknek a lineárkombinációja olyan molekulapályát ad, amely a molekula szimmetriájával összhangban van.
Példa: N2-molekula (1) a.) feltétel teljesül b.) feltétel nem teljesül c.) feltétel teljesül
Példa: N2-molekula (2) a.) feltétel teljesül b.) feltétel teljesül c.) feltétel teljesül
Példa: N2-molekula (3) a.) feltétel teljesül b.) feltétel nem teljesül c.) feltétel nem teljesül
Példa: N2-molekula (4) a.) feltétel teljesül b.) feltétel teljesül c.) feltétel teljesül
Homonukleáris molekulák Legegyszerűbb molekulapályák: a két atom egyforma atompályáinak lineárkombinációi.
: „kötő” pálya (kisebb energiájú kombináció) : „lazító” pálya (nagyobb energiájú kombináció) *-index : „lazító” pálya nincs index : „kötő” pálya -pálya : kötéstengelyre nézve hengerszimmetrikus -pálya : a kötéstengelyben csomósíkja van „g”-index : szimmetriacentruma szimmetrikus („gerade” = páros) „u”-index : szimmetriacentruma antiszimmetrikus („ungerade” = páratlan) Jelölési konvenciók:
Megjegyzés: Ezekből kiindulva több atompályából is képezhetünk MO-kat a variációs számításhoz.
N2 molekula MO diagramja 2px, 2py, 2pz 2px, 2py, 2pz 2s 2s 1s 1s
N2 molekula : p kombinációk lazító betöltetlen betöltött kötő
Elektronkonfiguráció Alapállapotban: Gerjesztett állapotban:
Szingulett és triplett állapotok Gerjesztett állapot: S = 0 S = 1 Szingulett állapot Triplett-állapot
Heteronukleáris molekula Példa: NO - a két atom ugyanabba a periódusba esik - az elektonkonfuguráció alapállapotban: (g és u index nincs, mivel nem szimmetrikus)
NO molekula MO diagramja (p*2p)1 N atom O atom (p2p)4 (s2p)2