1 / 38

An ARPES Survey of Polaronic Excitation in Lightly Doped La 2-x Sr x CuO 4

An ARPES Survey of Polaronic Excitation in Lightly Doped La 2-x Sr x CuO 4. Yu He , Zhi-Xun Shen Department of Applied Physics, Stanford University, CA 94305, U.S.A Ruihua He Department of Physics, Boston College, U.S.A.

gizela
Download Presentation

An ARPES Survey of Polaronic Excitation in Lightly Doped La 2-x Sr x CuO 4

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. An ARPES Survey of Polaronic Excitation in Lightly Doped La2-xSrxCuO4 Yu He, Zhi-XunShenDepartment of Applied Physics, Stanford University, CA 94305, U.S.A RuihuaHe Department of Physics, Boston College, U.S.A. Sung-Kwan Mo, ZahidHussain    Advanced Light Source, LBNL, U.S.A.   Makoto Hashimoto, Donghui LuSSRL, SLAC National Accelerator Laboratory, U.S.A. Yoichi AndoDepartment of Quantum Functional Materials, I.S.I.R., Osaka University, Japan Seiki Komiya CRIEPI, Japan APS March Meeting 2013 Session F35.00004 yuhe@stanford.edu

  2. Phase Diagrams in LSCO Long range AFM order MIT + localization Spin glass Neutron Scattering – long/short range AFM order SC VRH + small poalron M. Matsuda et al., Phys. Rev. B65, 134515 (2002) M. Hoffman et al., Phys. Rev. B 67, 184502 (2003) Fluc. AFM Phase separation S. Wakimoto et al., Phys. Rev. B 98, 247003 (2007) Transport – disorder and metal insulator transition Jun Tateno, Physica C 214 (1993) 377-384 Kastner et al, Rev. Mod. Phys. 70, 3(1998) Y. Ando et al., Phys. Rev. Lett L 93, 267001 (2004) Optical Measurements – mid-infrared peaks D Basov, Rev. Mod. Phys. 83, 471(2011) ARPES – Frank-Condon effect K. M. Shen et al., Phys. Rev. Lett. 93, 267002 (2004) O. Roesch et al., Phys. Rev. Lett95, 227002 (2005) K. M. Shen et al., Phys. Rev. B 75, 075115(2007) APS March Meeting 2013 Session F35.00004 yuhe@stanford.edu

  3. Excitations and Correlations in LSCO ARPES signature of FC broadening and polaronic excitation electron spin hole phonon K. M. Shen, PRL 93, 267002 (2004) L. Braicovch et al., PRL 104, 077002 (2010) Elizabeth Nowadnick, F35.00010: Quantum Monte Carlo simulations of ARPES spectra on correlated materials with electron-phonon coupling S. Komiya et al., PRB 65 214535(2002) Lanzara et al., Nature412, 510(2001) APS March Meeting 2013 Session F35.00004 yuhe@stanford.edu

  4. Region of Interest 300 250 200 150 100 50 Intensity T/K E – EF LCO 1% 2% 3% 4% 5% 6% 7% p APS March Meeting 2013 Session F35.00004 yuhe@stanford.edu

  5. Methodology Shirley or Exponential QP Gaussian envelope kink kink E – EF (eV) EDC fit MDC fit Node APS March Meeting 2013 Session F35.00004 yuhe@stanford.edu

  6. Momentum dependence node Bkg subtracted raw data antinode x = 0.03 Fitted Gaussian TC = 0 TN = 0 Temperature (K) 0 1 2 3 4 5 6 7 Sr doping (%) APS March Meeting 2013 Session F35.00004 yuhe@stanford.edu

  7. Momentum dependence x = 0.07 node antinode Tc ~ 18K Temperature (K) 0 1 2 3 4 5 6 7 Sr doping (%) APS March Meeting 2013 Session F35.00004 yuhe@stanford.edu

  8. LHB Temperature dependence a1 a2 b1 b2 c1 c2 d1 d2 FeTe AFM x=0.01 x=0 x=0.02 50K 20K 10K Low T High T LSMO FM Z.K. Liu et al., PRL 110, 037003 (2013) 260K 200K 230K • Lower hubbard band moves up with doping • Lower hubbard band moves up with increasing T • Similar temperature effect in FeTe and manganite • Optical measurements reaffirm the effect N. Manella et al., PRB 76, 233102 (2007) APS March Meeting 2013 Session F35.00004 yuhe@stanford.edu

  9. Phase Diagram of Spectral Weight Contribution from increase of phonon population emerges at high T Nodal hump relative spectral weight = 300 250 200 150 100 50 Weakens yet still exists into SC state with doping T/K Strong presence closely related to magnetic order strength LCO 1% 2% 3% 4% 5% 6% 7% p APS March Meeting 2013 Session F35.00004 yuhe@stanford.edu

  10. Take home messages • Spectral gap and polaronic hump track each other (doping and momentum) • Polaronichump dominates in spectral weight at antinode and low doping • Polaronic hump closely tied to AFM order but continues intoSC dome Node AN Anisotropic Coupling Hump tied to AFM order Nodal gap tracks hump What’s the role for the magnetic (dis)order? APS March Meeting 2013 Session F35.00004 yuhe@stanford.edu

  11. Thank you

  12. Spectral Weight in k-space Relative Spectral Weight = Strong presence near antinode APS March Meeting 2013 Session F35.00004 yuhe@stanford.edu

  13. Gaussian Centroid Position and Width Gaussian Position E – EF (eV) Gaussian Width (eV) While hole is being doped, Gaussian envelope more smeared out along with decrease in intensity Average number of dressed phonons goes down along with doping APS March Meeting 2013 Session F35.00004 yuhe@stanford.edu

  14. In the meantime… Deeply underdoped La-Bi2201, nodal gap and nodal hump Y. Peng et al., arXiv: 1302.3017 APS March Meeting 2013 Session F35.00004 yuhe@stanford.edu

  15. Momentum dependence 3% LSCO x = 0.01 x = 0.03 x = 0.05 x = 0.07 Node AN 1% LSCO Y. Ando et al., PRL 93, 267001 (2004) APS March Meeting 2013 Session F35.00004 yuhe@stanford.edu

  16. Which (dis)order is relevant? APS March Meeting 2013 Session F35.00004 yuhe@stanford.edu

  17. Phase Diagrams in UD-LSCO Phase separation Long range AFM order MIT + localization VRH + small poalron Spin glass Fluc. AFM SC Kastner et al, RMP 70, 3(1998) M. Matsuda et al., PRB 65, 134515 (2002) Jun Tateno, Physica C 214 (1993) 377-384 APS March Meeting 2013 Session F35.00004 yuhe@stanford.edu

  18. ARPES Signature of Polarons in HTSC Doping dependent CCOC study Resolved chemical potential puzzle Observation of polaronic excitation in La2CuO4 Similar k dependence in UD Bi2201 observed • e-ph interaction in the context of strong el-el correlation is an important emerging problem, this effect has a pronounced manifestation near the Mott limit [1] • Previous work has suggested the presence of small polaron behavior in the deeply underdoped regime • La2-xSrxCuO4 family provides opportunity to systematically study low-doping range • Temperature/momentum dependent polaronic behavior revealed by APRES spectra agrees with transport experiments K. M. Shen, PRL 93, 267002 (2004) O. Roesch et al. PRL 95, 227002 (2005) M. Hashimoto et al., PRB 77, 094516 (2008) Chemical potential shift Only parent compound Dopant control APS March Meeting 2013 Session F35.00004 yuhe@stanford.edu

  19. Franck Condon Effect in CCOC • multiple phonon excitation follows Piosson distribution • multiple Lorenztians form Gaussian envelope • average number <n> of coupled LO phonon K.M Shen et al., PRB 75, 075115(2007); PRL 93, 267002 (2004) APS March Meeting 2012 Session P21.00007 yuhe@stanford.edu

  20. Polaronic Features in Low-doping Cuprates SP formation in LSCO system polaron envelope in LCO 1 R. Roesch et al, PRL 95, 227002 (2005) Jun Tateno, PhysicaC 214 (1993) 377 0 1 Oxygen isotope effect S. Weyeneth et al., J Supercond Nov Magn 24: 1235

  21. ARPES – Lattice polaron formation In underdoped Na-CCOC K. M. Shen et al., Phys. Rev. Lett. 93, 267002 (2004)

  22. ARPES – Lattice polaron formation In CCOC again K.M. Shen et al., PHYSICAL REVIEW B 75, 075115(2007)

  23. ARPES – Lattice polaron formation In CCOC again – T-dep and k-dep line width K.M. Shen et al., PHYSICAL REVIEW B 75, 075115(2007)

  24. ~30meV S. Sugai et al., Phys. Rev. B 68, 184504 (2003) X.J. Zhou et al., Handbook of High-Temperature Superconductivity: Theory and Experiment (2007) 87-144

  25. NNH process @ high T VRH process @ low T

  26. Other evidence for the uniqueness of T~100K Anomalous Nernst signal in 5% LSCO 2e-2e transition in LSCO film A.T. Bollinger et al., Nature 472, 458(2011) Z.A. Xu et al., Nature 406, 486 (2000)

  27. Pnictides and Manganites Manganite - La1.2Sr1.8Mn2O7 Pnictide – Fe1.02Te • FM order, Tc ~ 120K • AFM order, TN ~ 72K • QP, hump and conductivity track each other Metallicity in AFM phase Zhongkai Liu et al., Session: B22.00011 N. Manella et al., PHYSICAL REVIEW B 76, 233102 (2007)

  28. 432.2 meV 118.8 meV Bkg_subtraction 509.7 meV 479.2 meV

  29. Fitting strategies in EDC analysis 376 meV pick a EDC intersecting no dispersion, subtract from the cut Fit with Gaussian*FD function 391 meV gradual deviation from Gaussian N. Mannellaet al., Nature438, 474(2005) plot (post-subtraction) EDC at kF Double check with 1st order derivative

  30. Neutron – spin fluctuation and correlation length In LSCO – spin wave excitation Hayden et al., (1991) M. Hoffman et al., Phys. Rev. B 67, 184502 (2003)

  31. Neutron – spin fluctuation and correlation length In LSCO – long range order vs. short range fluctuation S. Wakimoto et al., PRL 98, 247003 (2007) M. Matsuda et al., Phys. Rev. B 65, 134515 (2002) Neutron Scattering Studies of Antiferromagnetic Correlations in Cuprates, J. Tranquada (Chapter 6) Triangles – commensurate order Circles – incommensurate order Spin wave stiffness Interlayer coupling

  32. ARPES – nodal gap and the struggling history E. Razzoli. et al., PRL 110, 047004 (2013) T. Yoshida et al., J. Phys.: Condens. Matter 19 (2007) 125209 Doping dependence More data: A. Ino et al., PHYSICAL REVIEW B 65, 094504 Inna’s PNAS

  33. ARPES – nodal QP spec weight and Fermiology T. Yoshida et al., J. Phys.: Condens. Matter 19 (2007) 125209 M. Hashimoto et al., Phys. Rev. B 77, 094516 2008

  34. Transport – carrier mobility and magnetic correlation length Y. Ando et al., PRL 87, 017001 (2001) B. Keimer et al., PRB 46, 14034 (1992)

  35. Transport – VRH and NNH Jun Tateno, PhysicaC 214 (1993) 377-384

  36. Theory and Computation – disorder induced broadening and nodal gap W. Chen et al., PHYSICAL REVIEW B 80, 094519 (2009)

More Related