510 likes | 942 Views
C=C bond forming reactions. 1. b- Elimination. X=halogen, sulfonate, amminium, sulfonium : basic condition --- anti elimination. X=OH : acidic condition --- rearrangement occurs. 1. b- Elimination. 2. Pyrolytic syn -elimination --- retro-ene reaction. 300 ㅇ C. 100 ㅇ C.
E N D
C=C bond forming reactions 1. b-Elimination X=halogen, sulfonate, amminium, sulfonium : basic condition --- anti elimination X=OH : acidic condition --- rearrangement occurs
2. Pyrolytic syn-elimination --- retro-ene reaction 300 ㅇC 100 ㅇC Chugaev reaction 100 ㅇC
2. Pyrolytic syn-elimination --- retro-ene reaction < 100 ㅇC Room Temp. General procedure
3. Fragmentation b-fragmentation t-BuLi, ether 예외
4. Others From Hydrazone Bamford-Stevens rxn. JCS 1952, 4735 Shapiro rxn. Org. Rxn. 1976, 23, 405 From Diol Corey, TL, 1982, 23, 1979
3. Wittig Reaction Chemistry of Ylides Ylide : Formation of phosphorous Ylides R= Alkyl : base = BuLi, LDA E.W. NaOH
3. Wittig Reaction Stereoselectivity with non-stabilized ylides --- cis major non-polar solvent, salt free condition (HMPA) destabilizing phosphorous -- this is not exactly correct with stabilized ylides --- trans major
with non-stabilized ylides 80%, >98% cis
mechanism + betain [2+2] cis olefin
Schlosser modification -70oC trans:cis > 97:3 ACIE, 1966, 5, 126
For Hindered carbonyls Conia procedure Alcohol ensures the equilibrium between ketone and enolate Modhephene Anion of ylide 87% Corey, TL, 1985, 26, 555
with stabilized ylides mechanism
Effect of a-oxygenation and protic solvent DMF 86 : 14 CHCl3 40 : 60 CH3OH 8 : 92 Helv. 1979, 62, 2091 THF 6 : 94 THF-MeOH (1:1) 93 : 7 TL. 2004, 45, 3925
3.2 Wadsworth-Honer-Emmons reaction E-selective trans Water soluble ! W = CN, COOR, CHO, SO2Ph, C(O)R, Ph, vinyl not with Alkyl or H Does not eliminate spontaneously !
Preparation of the reagent Arbuzov reaction : Perkow reaction
cis selective olefination Z:E = 50:1 W.C. Still, TL, 24, 4405(’83) Z:E = 9:1 JOC, 64, 8406 (’99)
Stereo-selective olefination : Horner-Wittig reaction R’COOEt
Enantio-selective olefination > 99 : 1 Hannesian, TL, 33, 7659 (1992) 92 : 8 Masamune, TL, 37, 1077 (1996)
4. Peterson olefination Gillman, JOC, 27, 3647(’62) Peterson JOC, 33, 780 (’68)
5. Julia coupling trans major 2 ~ 3 step sequence ! One step via
5. Julia coupling trans major TL, 1545(1975)
6. Ramber-Backlund reaction JACS, 114, 7360(’92) 32 – 52 % 94 %
7. McMurry Coupling Pinacol coupling Mg SmI2 Mg-TMSCl 77%, E:Z = 7:3 McMurry, Chem. Rev. 89, 1513 (’89) Ziegler, JOC, 47, 5229 (’82) 56% 38% TL. 24, 1885 (’83)
8. Neutral methylenation TiCl4-Zn-CH2I2 TL, 2417(’78) a. Oshima-Lombardo reagent JACS, 108, 7408 (’86) 90% JACS, 119, 1127 (’97) b. Takai alkenylation JACS, 115, 2268 (’93)
Working through Metathesis 9. Transition metal chemistry : neutral olefination Tebbe, JACS, 100, 3611, 1978 a. Tebbe’s reagent Neutral, reactive Unstable, limited X= H, R Pine, Grubbs, JACS, 102, 3270, 1980 X= OR, SR, NR2
b.Petasis reagent JACS, 112, 6392, (1990) R can be TMS 82% TL, 36, 3619 (1995)
c. Olefin Metathesis Grubbs, Tet., 60, 7117, 2004 Metathesis Olefin Metathesis JACS, 90, 4133, 1968 JACS, 92, 528, 1970
Schrock cat. Reactive, unstable Grubbs 1st gen.cat./ 2nd gen.cat. Reactive, stable T, 55, 8141, 1999 mechanism
Nicolaou, JACS. 1997, 119, 7960 Smith III, JACS. 2000, 122, 4985
Synthesis of Epoxides a. Sulfur ylide chemistry Sulfur Ylide Sulfonium salt Corey, JACS, 87, 1353, 1965
C. Johnson, JACS, 95, 7424, 1973 Thermodynamic kinetic
Cyclopropanation with Sulfur ylide Soft Nu Hard Nu 81% 89% 75%
Asymmetric Epoxidation with Sulfur ylide C. Johnson, JACS.1973, 7424 Trost,JACS1973, 962 JOC.1989, 4222 97% e.e. Tet. Asym.1996, 1783
Application 배임혁, ACIE, 42, 3274 (’03) 배임혁, Tet., 60, 9725 (’04)
Synthesis of Epoxides b. Darzen Condensation
Asymmetric Darzen Condensation A. Ghosh, OL, 6, 2725 (’04) Extension of the reaction Org. Syn., Coll V 4, 459, (’63)
Homework Chapter 2 :4, 7,14, Due : May, 11