1 / 38

___________________________________________________________________________

Linear Programming. Assignment Problem. ___________________________________________________________________________ Quantitative Methods of Management  Jan Fábry. employees. jobs. projects. managers. jobs. machines. service teams. cars. doctors. night shifts.

glenhall
Download Presentation

___________________________________________________________________________

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Linear Programming Assignment Problem ___________________________________________________________________________ QuantitativeMethodsof Management  Jan Fábry

  2. employees jobs projects managers jobs machines service teams cars doctors night shifts Linear Programming Applications Assignment Problem Assignment „1 to 1“ Objective: maximize the effect of assignment ___________________________________________________________________________ QuantitativeMethodsof Management  Jan Fábry

  3. Linear Programming Applications Assignment Problem Example – Prague Build, Inc. • Excavating shafts for basements (Michle, Prosek, Radlice, Trója) • Each excavation takes 5 days • 4 excavators stored in 4 separated garages (everyday‘s movement) • One excavator to one destination • Distances between garages and destinations Objective: minimize total distance necessary for all movements ___________________________________________________________________________ QuantitativeMethodsof Management  Jan Fábry

  4. ___________________________________________________________________________ QuantitativeMethodsof Management  Jan Fábry

  5. Linear Programming Applications Assignment Problem Example – Prague Build, Inc. Distances ___________________________________________________________________________ QuantitativeMethodsof Management  Jan Fábry

  6. Linear Programming Applications Assignment Problem Example – Prague Build, Inc. Decision variables ___________________________________________________________________________ QuantitativeMethodsof Management  Jan Fábry

  7. 1 if the excavator from the garage i goes to the destination j xij = 0 otherwise Linear Programming Applications Assignment Problem Example – Prague Build, Inc. Decision variables Binary variable ___________________________________________________________________________ QuantitativeMethodsof Management  Jan Fábry

  8. Linear Programming Applications Assignment Problem Example – Prague Build, Inc. Optimal solution ___________________________________________________________________________ QuantitativeMethodsof Management  Jan Fábry

  9. Linear Programming Applications Assignment Problem Example – Prague Build, Inc. Optimal solution ___________________________________________________________________________ QuantitativeMethodsof Management  Jan Fábry

  10. ___________________________________________________________________________ QuantitativeMethodsof Management  Jan Fábry

  11. Network Models ___________________________________________________________________________ Quantitative Methods of Management  Jan Fábry

  12. UNDIRECTED DIRECTED j i j i UNDIRECTED NETWORK DIRECTED NETWORK Network Models • Network • Nodes • Arcs ___________________________________________________________________________ Quantitative Methods of Management  Jan Fábry

  13. 3 5 7 Network Models • Path Sequence of arcs in which the initial node of each arc is identical with the terminal node of the preceding arc. ___________________________________________________________________________ Quantitative Methods of Management  Jan Fábry

  14. 2 5 1 1 4 6 6 3 6 5 2 1 4 3 Network Models • Path  Open Path ___________________________________________________________________________ Quantitative Methods of Management  Jan Fábry

  15. 2 5 1 1 4 6 3 6 4 1 5 2 3 Network Models • Circuit (Cycle) Path starting and ending in the same node (closed path).  ___________________________________________________________________________ Quantitative Methods of Management  Jan Fábry

  16. 2 5 1 4 6 3 1 2 4 5 6 3 Network Models • Connected Network There is a path connecting every pair of nodes in the network. ___________________________________________________________________________ Quantitative Methods of Management  Jan Fábry

  17. 2 5 1 4 6 3 1 2 4 5 6 3 Network Models • Unconnected Network ___________________________________________________________________________ Quantitative Methods of Management  Jan Fábry

  18. 2 4 6 1 3 5 7 Removing 1 arc Unconnected network Adding 1 arc Circuit in the network 2 4 4 4 3 3 Network Models • Tree Connected network without any circuit. Exactly 6 arcs (n-1) ___________________________________________________________________________ Quantitative Methods of Management  Jan Fábry

  19. STAR „CHRISTMAS“ TREE SNAKE Network Models • Tree ___________________________________________________________________________ Quantitative Methods of Management  Jan Fábry

  20. 2 5 1 4 6 3 1 2 4 5 6 3 Network Models • Spanning Tree Tree including all the nodes from the original network. ___________________________________________________________________________ Quantitative Methods of Management  Jan Fábry

  21. yij Values Arcs j j i i Nodes yi yj - distance - time - cost - capacity Network Models • Evaluated Network ___________________________________________________________________________ Quantitative Methods of Management  Jan Fábry

  22. Network Models Basic Network Applications • Shortest Path Problem • Traveling Salesperson Problem (TSP) • Minimal Spanning Tree • Maximum Flow Problem Project Management • Critical Path Method (CPM) • Program Evaluation Review Technique (PERT) ___________________________________________________________________________ Quantitative Methods of Management  Jan Fábry

  23. Network Models Shortest Path Problem ___________________________________________________________________________ QuantitativeMethodsof Management  Jan Fábry

  24. 18 2 5 14 23 12 30 10 1 15 4 15 25 6 3 16 2 4 5 6 1 3 Network Models Shortest Path Problem Shortest path between 2 nodes ___________________________________________________________________________ QuantitativeMethodsof Management  Jan Fábry

  25. Network Models Shortest Path Problem Shortest Paths Between All Pairs of Nodes ___________________________________________________________________________ QuantitativeMethodsof Management  Jan Fábry

  26. Network Models Traveling Salesperson Problem ___________________________________________________________________________ QuantitativeMethodsof Management  Jan Fábry

  27. 18 2 5 14 Homecity 23 12 30 1 10 1 15 4 15 25 6 3 16 1 5 4 2 6 3 Network Models Traveling Salesperson Problem (TSP) ___________________________________________________________________________ QuantitativeMethodsof Management  Jan Fábry

  28. Network Models Minimal Spanning Tree ___________________________________________________________________________ QuantitativeMethodsof Management  Jan Fábry

  29. Network Models Minimal Spanning Tree Example - Exhibition • Exhibition area with 9 locations that need electricity power • Use cable for extensions • Price of cable = 10 CZK / 1 m Objective: minimize the cost of all the extensions ___________________________________________________________________________ QuantitativeMethodsof Management  Jan Fábry

  30. 85 2 7 61 88 Power 76 63 9 70 1 90 1 5 55 40 43 54 75 80 8 3 60 74 68 35 52 10 4 120 6 71 7 6 9 5 2 8 10 3 4 Network Models Minimal Spanning Tree Example - Exhibition ___________________________________________________________________________ QuantitativeMethodsof Management  Jan Fábry

  31. 2 7 61 Power 76 9 1 1 5 55 40 43 8 3 60 68 35 52 10 4 6 6 5 2 9 7 8 10 4 3 Network Models Minimal Spanning Tree Example - Exhibition ___________________________________________________________________________ QuantitativeMethodsof Management  Jan Fábry

  32. Capacitednetwork Input Output 7 9 3 Network Models Maximum Flow Problem Source GasFluidTrafficInformationPeople Sink ___________________________________________________________________________ QuantitativeMethodsof Management  Jan Fábry

  33. UNDIRECTEDARC DIRECTEDARC j j i i Network Models Maximum Flow Problem Flow Flow  Capacity ___________________________________________________________________________ QuantitativeMethodsof Management  Jan Fábry

  34. Network Models Maximum Flow Problem Mathematical Model • Flow through each arc  Capacity of the arc • Quantity flowing out =Quantity flowing into (except the source and the sink) • Total flow into the source = 0 • Total flow out of the sink = 0 • Total flow out of the source = Total flow into the sink ___________________________________________________________________________ QuantitativeMethodsof Management  Jan Fábry

  35. Network Models Maximum Flow Problem Example – White Lake City • The city is situated on the edge of a small lake • To minimize disruptive effects of possible flood • Reconstruction of drain system • 2 alternatives - Northern Channel & Southern Channel Objective: maximizing the quantity of water being pumped in one hour ___________________________________________________________________________ QuantitativeMethodsof Management  Jan Fábry

  36. 740 780 300 900 1050 270 800 370 410 470 520 230 1100 700 280 370 720 800 1400 840 800 550 400 300 1510 250 660 290 130 220 700 420 8 2 3 5 7 8 4 6 2 3 7 6 5 4 Northern Channel Reservoir Lake Southern Channel ___________________________________________________________________________ QuantitativeMethodsof Management  Jan Fábry

  37. 610 2 5 300 610 8 100 410 1 1100 700 3 300 6 220 390 300 1500 9 4 130 7 220 6 8 7 5 3 2 4 Northern Channel ___________________________________________________________________________ QuantitativeMethodsof Management  Jan Fábry

  38. 780 2 6 1050 780 470 3 470 9 200 1 800 1400 840 4 8 400 250 210 5 360 150 7 3 8 7 6 4 2 5 Southern Channel ___________________________________________________________________________ QuantitativeMethodsof Management  Jan Fábry

More Related