1 / 18

Problem-Solving Methods in Physics: Calculating Unbalanced Forces

Learn step-by-step approaches for solving dynamic problems in physics, including finding forces, accelerations, mass, tension, and more. Understand concepts like free-body diagrams and force components. Apply principles of Newton's second law to determine unknowns.

glenray
Download Presentation

Problem-Solving Methods in Physics: Calculating Unbalanced Forces

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Solving problems when  F = ma

  2. The cyclist has a mass of 50 kg and is accelerating at 0.9 m/s2. What is the size of the unbalanced force acting on the cyclist?

  3. How to approach a dynamic problem: • Draw a free-body diagram • Choose a coordinate axis and resolve all forces into components. • Set the sum of the force components each equal to ma. • Solve the resulting equations for the unknowns.

  4. Read the problem. (identify givens, look for “hidden” knowledge) Draw a free-body diagram (identify all forces acting upon object) Add all forces in one direction together (x?)  F = F1 + F2 + F3 + … (determine sum of forces, maybe Fnet = 0 or Fnet = ma) Add all forces in other direction together (y?) (determine sum of forces, maybe Fnet = 0 or Fnet = ma) Solve for what you don’t know

  5. If each person is pushing forward against the 1,500 N car, find: • The Normal force • The acceleration of the car

  6. If the 10 Newton crate is being pushed forward by a • force P of magnitude 80 N at an angle of 300 as shown • find: • The mass of the crate • The Normal force • The acceleration of the crate

  7. If m1=20 kg and m2=70 kg find: • The tension in the cable • The acceleration of the masses

  8. 600N 1 m • Given: The car is accelerating • forward at 2m/s2 and  = 25° • Find: The forces in the ropes AB • and AC.

  9. A stream of water strikes a stationary turbine blade, as the drawing illustrates. The incident water stream has a velocity of +18.0 m/s, while the exiting water stream has a velocity of -18.0 m/s. The mass of water per second that strikes the blade is 25.0 kg/s. Find the magnitude of the average force exerted on the water by the blade.

  10. Robin Hood (m =82 kg) is escaping from a dangerous situation. • With one hand he is gripping the rope that holds up a chandelier • (m =220 kg). When he cuts the rope where it is tied to the floor, the • chandelier will fall, and he will be pulled up to the balcony. Find: • the acceleration with which Robin is pulled upward • the tension in the rope while Robin escapes.

  11. What is the net force acting on the mule? • What is the approximate answer you expect to get? • Begin by calculating the components of each force.

  12. A 3.0 kg mass hangs at one end of a rope that is attached to a support on a railroad car. When the car accelerates to the right, the rope makes an angle of 4.0° with the vertical.  Find the acceleration of the car.

  13. In the vertical direction In the horizontal direction

  14. A block S (the sliding block) has a mass M = 3.3 kg. The block is free to move along a horizontal frictionless surface and is connected by a cord that wraps over a frictionless pulley to a second block H (the hanging block), with mass m = 2.1 kg. The cord and pulley are “massless”. The hanging block H falls as the sliding block S accelerates to the right.

  15. An inclined plane making an angle of 25o with the horizontal has a • pulley at its top. A 30 kg block on the plane is connected to a freely • hanging 20 kg block by means of a cord passing over the pulley. • Compute the distance that the 20 kg block will fall in 2.0 seconds • starting from rest. Neglect friction. • We now cut the cord. As the block then slides down the inclined • plane, does it accelerate? If so, what is its acceleration?

  16. Positive direction is down the inclined plane

  17. Given: M1 = 12.0 kg M2 = 24.0 kg M3 = 31.0 kg T3 = 65.0 N What is the tension T2

More Related