1 / 13

4) 若 A 可逆,则 也可逆,

4) 若 A 可逆,则 也可逆,. 证明 :. 所以. 注1 : 当 | A | ≠ 0 时, k 为正 整数, λ , μ 为整数,有. 4 ) ( A λ ) μ = A λμ. A 为可逆矩阵,也称为非奇异矩阵,. A 为不可逆矩阵,也称为奇异矩阵. 四. 逆矩阵的应用. 例1. 解矩阵方程. 解:设. 则上式变成:.

Download Presentation

4) 若 A 可逆,则 也可逆,

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 4) 若A可逆,则 也可逆, 证明: 所以

  2. 注1:当 |A| ≠ 0时,k为正 整数,λ,μ为整数,有 4 ) ( Aλ ) μ = Aλμ A为可逆矩阵,也称为非奇异矩阵, A为不可逆矩阵,也称为奇异矩阵.

  3. 四. 逆矩阵的应用 例1. 解矩阵方程 解:设 则上式变成: AXB = C

  4. 例2. 设 求( E + B )-1

  5. 解: 由 即 ( E + A )( E + B ) = 2E

  6. 例3. 设 A,B 均为 n 阶方矩 阵, 若 E-AB 可逆,则 E-BA 也可 逆,并求: 证明:A-ABA = A-ABA ( E-AB ) A= A( E-BA ) 所以

  7. 又因为 E = E- BA + BA = [E -B ( E -AB )-1A] ( E - BA ) 所以 E-BA 可逆,且

  8. 五、几个常用的公式 • 1) AA*= A*A= |A|E • 2) A* = |A|A-1 • 3) |A-1| = |A|-1 • |λA| = λn|A| • 5) (λA)-1 = λ-1A-1 例4 若 |A| ≠ 0, 试证(1) |A*| =|A|n-1;(2)(A*)-1= (A-1)* (3) (A*)T = (AT )*;(4)(A*)* = |A|n-2A;(5)(kA)* = kn-1A*。 ||A|A-1| = 证 (1) |A*| = |A|n|A-1| = |A|n-1; (2) (A*)-1= (|A|A-1)-1 = |A-1|(A-1)-1 = (A-1)*; (3) (A*)T = ( |A|A-1)T = |AT|(A-1)T = |AT|(AT)-1 = (AT )*

  9. (A*)* = |A*|(A*)-1 = |A|n-1(|A|A-1)-1 = |A|n-2A (5) (kA)* = |kA|(kA)-1 = kn|A|k-1A-1 = kn-1|A|A-1 = kn-1A*

  10. 例5 设矩阵 A、B 满足 A*BA = 2BA –8E,其中 求B。 解 由于|A|≠0,所以A可逆,在 A*BA = 2BA –8E 的两边分别左乘A,右乘A-1得 |A|B = 2AB -8E 即 2AB + 2B = 8E

  11. 从而有 AB + B = 4E 故 B = 4 ( A + E )-1

  12. 作业: 1.解矩阵方程 2.设方阵A满足 证明 A 及 A + 2E 都可逆, 并求 A-1及 ( A +2E )-1 3.设 AB = A + 2B ,求 B.

More Related