1 / 19

XAX 10 ton Noble-Liquid Double-Phase TPC for Rare Processes

XAX 10 ton Noble-Liquid Double-Phase TPC for Rare Processes. Katsushi Arisaka. University of California, Los Angeles Department of Physics and Astronomy arisaka@physics.ucla.edu. XAX Detector (Option A). 2 m. 7m. 40 Ar (6 ton). 129/131 Xe (14 ton). 136 Xe (14 ton). 1.5 m. 7 m.

godfrey
Download Presentation

XAX 10 ton Noble-Liquid Double-Phase TPC for Rare Processes

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. XAX10 ton Noble-Liquid Double-Phase TPC for Rare Processes Katsushi Arisaka University of California, Los Angeles Department of Physics and Astronomy arisaka@physics.ucla.edu Katsushi Arisaka

  2. XAX Detector (Option A) 2 m 7m 40Ar (6 ton) 129/131Xe (14 ton) 136Xe (14 ton) 1.5 m 7 m Water Tank Veto 11 m Katsushi Arisaka

  3. XAX Detector (Option B) Year 1 : Natural Xe (14 ton) Year 2 : Argon (6 ton) Year 3: 136Xe (14 ton) Year 4: 129/131Xe (14 ton) 2 m 8 m Xe (14 ton) 1.5 m Water Tank Veto 8 m Katsushi Arisaka

  4. XAX Detector Design 0 V -10.1 kV Gas Xe -10 kV -18 kV Liquid Xe (14 ton) -10 kV -10 kV 1.5 m 3” QUPID (Total ~3600) 20 cm Fiducial Volume (7 ton) -180 kV -10 kV 2 m Katsushi Arisaka

  5. Why Multiple Targets? • Systematic Study of Dark Matter Interaction • Target Mass dependence of Cross section • Xenon vs. Argon • Spin dependence of cross section • 129/131Xe (Spin odd) vs. 136Xe (Spin even) • Precise determination of Mass and Cross section • Neutrino-less Double Beda Decay (DBD) •  > 1028 years by136Xe (like EXO) • Solar Neutrino • 1% measurement of pp chain flux by 129/131Xe. Katsushi Arisaka

  6. QUPID(Quartz Photon Intensifying Detector) Quartz Photo Cathode (-10 kV) APD (0 V) Quartz Quartz Katsushi Arisaka

  7. Simulation of Electron Trajectories Katsushi Arisaka

  8. 13 inch HAPD for T2K by Hamamatsu Katsushi Arisaka

  9. PE Distribution of 13 inch HAPD 1 pe 2 pe 3 pe 4 pe 5 pe Katsushi Arisaka

  10. Comparison Katsushi Arisaka

  11. Expected Performance of QUPID • Large diameter: 3 inch • Existing largest PMT with low radioactivity is 2 inch (R8778) • Extremely low radioactivity: 1mBq (now)  0.1mBq (future) • To be compared with • R8778 (2 inch) 50 mBq • R8520 (1 inch) 10 mBq • True photon counting • 1,2… 5 photo-electron peaks are clearly visible. • Collection efficiency is ~100% • Excess Noise Factor (ENF) = 1.0 • Fast Timing: < 500 psec • 500 psec Transit Time spread expected • Simple HV supply • HV supply can be common for all HAPD • No Tube to tube variation of gains • Resister chain not necessary Katsushi Arisaka

  12. 90% CL Sensitivity for WIMP CDMSII CDMSII XENON10 XENON10 LUX- 100 LUX Super-LUX Katsushi Arisaka

  13. Energy Resolution of XENON 10 Xe-129 236 keV Xe-131 164 keV Xe-129 236 keV Xe-131 164 keV • = 0.9% at 2.5 MeV • FWHM = 50 keV expected Katsushi Arisaka

  14. Fraction of 2 neutrino Double Beta Decay Background vs. Energy resolution Katsushi Arisaka

  15. Energy Spectrum (Xe 136 enriched) 2 DBD (1022 yrs) pp Solar Be7 Solar 0 DBD (1027 yrs) B8 Solar

  16. Expected Background from Gammas (1 mBq / QUPID) 2 DBD (1022 yrs) 0 cm shield pp Solar 10 cm shield Be7 Solar 20 cm shield 0 DBD (1027 yrs) 30 cm shield B8 Solar

  17. Expected Background from Gammas (1 mBq / QUPID)  BG ~ 10-7dru FWHMM = 50 keV  4*10-4 /FWHM*kg*year 2 DBD (1022 yrs) 0 cm shield 10 cm shield 20 cm shield 30 cm shield 0 DBD (1027 yrs) B8 Solar

  18. Expected No. of DBD Signals and Backgrounds(10 ton-year of Liquid Xenon, Window = 2479 ± 25 keV) No. of Background Events No. of 0-Neutrino DBD Signals 14 ton 9 ton 6.6 ton 4.2 ton 2.4 ton Self Shielding Cut (cm from wall) Life Time (Year) Katsushi Arisaka

  19. Summary of DBD Detection • All the gamma ray background can be effectively removed. • Low-radioactive QUPID is essential. • < 1 mBq for  > 1027 years • < 0.1 mBq for  > 1028 years • Extensive active shielding. • 30 cm cut required (4 ton fiducial volume out of 14 ton.) • Multiple hit cut. • Ba2+ tagging is not necessary, unlike EXO. • The tail from two neutrino double beta decays is negligible. • based on XENON10, the energy resolution of the double-phase Xenon should be superior to EXO. •  = 1.0% at 2.5 MeV (FWHM = 50 keV) • > 3 pe/keV is required Katsushi Arisaka

More Related