190 likes | 372 Views
XAX 10 ton Noble-Liquid Double-Phase TPC for Rare Processes. Katsushi Arisaka. University of California, Los Angeles Department of Physics and Astronomy arisaka@physics.ucla.edu. XAX Detector (Option A). 2 m. 7m. 40 Ar (6 ton). 129/131 Xe (14 ton). 136 Xe (14 ton). 1.5 m. 7 m.
E N D
XAX10 ton Noble-Liquid Double-Phase TPC for Rare Processes Katsushi Arisaka University of California, Los Angeles Department of Physics and Astronomy arisaka@physics.ucla.edu Katsushi Arisaka
XAX Detector (Option A) 2 m 7m 40Ar (6 ton) 129/131Xe (14 ton) 136Xe (14 ton) 1.5 m 7 m Water Tank Veto 11 m Katsushi Arisaka
XAX Detector (Option B) Year 1 : Natural Xe (14 ton) Year 2 : Argon (6 ton) Year 3: 136Xe (14 ton) Year 4: 129/131Xe (14 ton) 2 m 8 m Xe (14 ton) 1.5 m Water Tank Veto 8 m Katsushi Arisaka
XAX Detector Design 0 V -10.1 kV Gas Xe -10 kV -18 kV Liquid Xe (14 ton) -10 kV -10 kV 1.5 m 3” QUPID (Total ~3600) 20 cm Fiducial Volume (7 ton) -180 kV -10 kV 2 m Katsushi Arisaka
Why Multiple Targets? • Systematic Study of Dark Matter Interaction • Target Mass dependence of Cross section • Xenon vs. Argon • Spin dependence of cross section • 129/131Xe (Spin odd) vs. 136Xe (Spin even) • Precise determination of Mass and Cross section • Neutrino-less Double Beda Decay (DBD) • > 1028 years by136Xe (like EXO) • Solar Neutrino • 1% measurement of pp chain flux by 129/131Xe. Katsushi Arisaka
QUPID(Quartz Photon Intensifying Detector) Quartz Photo Cathode (-10 kV) APD (0 V) Quartz Quartz Katsushi Arisaka
Simulation of Electron Trajectories Katsushi Arisaka
13 inch HAPD for T2K by Hamamatsu Katsushi Arisaka
PE Distribution of 13 inch HAPD 1 pe 2 pe 3 pe 4 pe 5 pe Katsushi Arisaka
Comparison Katsushi Arisaka
Expected Performance of QUPID • Large diameter: 3 inch • Existing largest PMT with low radioactivity is 2 inch (R8778) • Extremely low radioactivity: 1mBq (now) 0.1mBq (future) • To be compared with • R8778 (2 inch) 50 mBq • R8520 (1 inch) 10 mBq • True photon counting • 1,2… 5 photo-electron peaks are clearly visible. • Collection efficiency is ~100% • Excess Noise Factor (ENF) = 1.0 • Fast Timing: < 500 psec • 500 psec Transit Time spread expected • Simple HV supply • HV supply can be common for all HAPD • No Tube to tube variation of gains • Resister chain not necessary Katsushi Arisaka
90% CL Sensitivity for WIMP CDMSII CDMSII XENON10 XENON10 LUX- 100 LUX Super-LUX Katsushi Arisaka
Energy Resolution of XENON 10 Xe-129 236 keV Xe-131 164 keV Xe-129 236 keV Xe-131 164 keV • = 0.9% at 2.5 MeV • FWHM = 50 keV expected Katsushi Arisaka
Fraction of 2 neutrino Double Beta Decay Background vs. Energy resolution Katsushi Arisaka
Energy Spectrum (Xe 136 enriched) 2 DBD (1022 yrs) pp Solar Be7 Solar 0 DBD (1027 yrs) B8 Solar
Expected Background from Gammas (1 mBq / QUPID) 2 DBD (1022 yrs) 0 cm shield pp Solar 10 cm shield Be7 Solar 20 cm shield 0 DBD (1027 yrs) 30 cm shield B8 Solar
Expected Background from Gammas (1 mBq / QUPID) BG ~ 10-7dru FWHMM = 50 keV 4*10-4 /FWHM*kg*year 2 DBD (1022 yrs) 0 cm shield 10 cm shield 20 cm shield 30 cm shield 0 DBD (1027 yrs) B8 Solar
Expected No. of DBD Signals and Backgrounds(10 ton-year of Liquid Xenon, Window = 2479 ± 25 keV) No. of Background Events No. of 0-Neutrino DBD Signals 14 ton 9 ton 6.6 ton 4.2 ton 2.4 ton Self Shielding Cut (cm from wall) Life Time (Year) Katsushi Arisaka
Summary of DBD Detection • All the gamma ray background can be effectively removed. • Low-radioactive QUPID is essential. • < 1 mBq for > 1027 years • < 0.1 mBq for > 1028 years • Extensive active shielding. • 30 cm cut required (4 ton fiducial volume out of 14 ton.) • Multiple hit cut. • Ba2+ tagging is not necessary, unlike EXO. • The tail from two neutrino double beta decays is negligible. • based on XENON10, the energy resolution of the double-phase Xenon should be superior to EXO. • = 1.0% at 2.5 MeV (FWHM = 50 keV) • > 3 pe/keV is required Katsushi Arisaka