1 / 12

Efficient Multiple Access Techniques for Channel Multiplexing

Learn about multiplexing in 4 dimensions - space, time, frequency, and code - to achieve multiple use of a shared medium. Explore frequency, time, time and frequency, and code multiplexing methods, their advantages, disadvantages, and implementation. Discover how QPSK and MSK modulation techniques enhance data transmission efficiency.

gpridgen
Download Presentation

Efficient Multiple Access Techniques for Channel Multiplexing

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Multiple Access Techniques

  2. Multiplexing channels ki • Multiplexing in 4 dimensions • space (si) • time (t) • frequency (f) • code (c) • Goal: multiple use of a shared medium • Important: guard spaces needed! k1 k2 k3 k4 k5 k6 c t c s1 t s2 f f c t s3 f 2

  3. 1. Frequency multiplex • Separation of the whole spectrum into smaller frequency bands • A channel gets a certain band of the spectrum for the whole time • Advantages: • no dynamic coordination necessary • works also for analog signals • Disadvantages: • waste of bandwidth if the traffic is distributed unevenly • inflexible • guard spaces k1 k2 k3 k4 k5 k6 c f t 3

  4. 2. Time multiplex • A channel gets the whole spectrum for a certain amount of time • Advantages: • only one carrier in themedium at any time • throughput high even for many users • Disadvantages: • precise synchronization necessary k1 k2 k3 k4 k5 k6 c f t 4

  5. 3. Time and frequency multiplex • Combination of both methods • A channel gets a certain frequency band for a certain amount of time • Example: GSM • Advantages: • better protection against tapping • protection against frequency selective interference • higher data rates compared tocode multiplex • but: precise coordinationrequired k1 k2 k3 k4 k5 k6 c f t 5

  6. 4. Code multiplex • Each channel has a unique code • All channels use the same spectrum at the same time • Advantages: • bandwidth efficient • no coordination and synchronization necessary • good protection against interference and tapping • Disadvantages: • lower user data rates • more complex signal regeneration • Implemented using spread spectrum technology k1 k2 k3 k4 k5 k6 c f t 6

  7. 7

  8. 8

  9. QPSK modulation 8 9

  10. QPSK receiver 9 10

  11. MSK modulation 11

  12. MSK receiption 11 12

More Related