1 / 36

Latest Results from the Cosmic Background Imager

Latest Results from the Cosmic Background Imager. Steven T. Myers. National Radio Astronomy Observatory Socorro, NM. A Theoretical Digression. The Cosmic Microwave Background. Discovered 1965 ( Penzias & Wilson ) 2.7 K blackbody Isotropic Relic of hot “big bang”

grady-yang
Download Presentation

Latest Results from the Cosmic Background Imager

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Latest Results from the Cosmic Background Imager Steven T. Myers National Radio Astronomy Observatory Socorro, NM

  2. A Theoretical Digression

  3. The Cosmic Microwave Background • Discovered 1965 (Penzias & Wilson) • 2.7 K blackbody • Isotropic • Relic of hot “big bang” • Last scattering “surface” z ~ 1000 • COBE 1992 • Blackbody 2.725 K • 3 mK dipole (Doppler) • Anisotropies 10-5

  4. Primary Anisotropies Courtesy Wayne Hu – http://background.uchicago.edu

  5. Secondary Anisotropies Courtesy Wayne Hu – http://background.uchicago.edu

  6. CMB Polarization • Due to quadrupolar intensity field at scattering Courtesy Hu & White– http://background.uchicago.edu

  7. Polarization Power Spectra Hu & Dodelson ARAA 2002

  8. CMB State of the Art: WMAP + “ext” WMAP Satellite

  9. The Cosmic Background Imager

  10. The Cosmic Background Imager • A collaboration between • Caltech (A.C.S. Readhead PI) • NRAO • CITA • Universidad de Chile • University of Chicago • With participants also from • U.C. Berkeley, U. Alberta, ESO, IAP-Paris, NASA-MSFC, Universidad de Concepción • Funded by • National Science Foundation, the California Institute of Technology, Maxine and Ronald Linde, Cecil and Sally Drinkward, Barbara and Stanley Rawn Jr., the Kavli Institute, and the Canadian Institute for Advanced Research

  11. The Instrument • 13 90-cm Cassegrain antennas • 78 baselines • 6-meter platform • Baselines 1m – 5.51m • 10 1 GHz channels 26-36 GHz • HEMT amplifiers (NRAO) • Cryogenic 6K, Tsys 20 K • Single polarization (R or L) • Polarizers from U. Chicago • Analog correlators • 780 complex correlators • Field-of-view 44 arcmin • Image noise 4 mJy/bm 900s • Resolution 4.5 – 10 arcmin

  12. Site – Northern Chilean Andes

  13. The CMB and Interferometry • The sky can be uniquely described by spherical harmonics • CMB power spectra are described by multipole l ( the angular scale in the spherical harmonic transform) • For small (sub-radian) scales the spherical harmonics can be approximated by Fourier modes • The conjugate variables are (u,v) as in radio interferometry • The uv radius is given by l / 2p • The projected length of the interferometer baseline gives the angular scale • Multipole l = 2pB / l • An interferometer naturally measures the transform of the sky intensity in l space convolved with aperture

  14. 3-Axis mount : rotatable platform

  15. CBI Beam and uv coverage • Over-sampled uv-plane • excellent PSF • allows fast gridded method (Myers et al. 2000)

  16. New: 2000+2001 Extended Mosaics • CBI field-of-view 45’ → sl~180 • narrow CMB peaks, mosaicing required!

  17. New: CBI 2000+2001 Results Noise Power Resid. Sources

  18. CBI 2000+2001, WMAP, ACBAR

  19. New: Cosmological Parameters • Data: • WMAP • CBI + WMAP • CBI + ALL • Priors: • flat Wtot=1 • 45 < H0 < 90 • t0 > 10 Gyr • Reference: • Readhead et al. ApJ in press (2004)astro-ph/0402359

  20. Combination: • s8 vs. as New: Running Spectral Index? • Data: • WMAP • CBI + WMAP • CBI + ALL + LSS prior • Weak Priors: • flat Wtot=1 • 45 < H0 < 90 • t0 > 10 Gyr

  21. Dawson et al. 2002 SZE Angular Power Spectrum [Bond et al. 2002] • Smooth Particle Hydrodynamics (5123) [Wadsley et al. 2002] • Moving Mesh Hydrodynamics (5123) [Pen 1998] • 143 Mpc 8=1.0 • 200 Mpc 8=1.0 • 200 Mpc 8=0.9 • 400 Mpc 8=0.9

  22. New: High l excess & ambient SZ? • Data: • CBI + BIMA • CBI + BIMA + ACBAR • Details: • non-Gaussian correction (F=3) • References: • BIMA 30GHz • Dawson et al. 2002 • ACBAR • Goldstein et al. 2003 • Kuo et al. 2004

  23. SZE with CBI: z < 0.1 clusters Udomprasert 2003, PhD thesis, Caltech

  24. CBI Polarization

  25. Polarization Interferometry • CBI receivers can observe either R or L circular pol • RR and LL measure CMB intensity (temperature) I • RL and LR measure CMB polarization Q,U

  26. Polarization E and B modes • A useful decomposition of the polarization signal is into gradient and curl modes – E and B: The CBI measures E & B “directly” !

  27. Polarization Issues • Low signal levels • High sensitivity and long integrations needed • Prone to systematics and foreground contamination • Instrumental polarization • Well-calibrated system necessary • Straightforward for interferometry (leakage R↔L) • Stray radiation • Sky (atmosphere) ~unpolarized (good!) • Ground highly polarized (bad!) • Scan differencing or projection necessary • Computationally intensive! • covariances TT, EE, BB, TE, EB, TB plus N and Csrcs • 6 x 6 mosaics with scan projection Cscan

  28. http://astro.uchicago.edu/dasi/polexpert/ DASI & WMAP Polarization Courtesy Wayne Hu – http://background.uchicago.edu

  29. CBI Current Polarization Data • Observing since Sep 2002 in compact configuration • Data processed through May 2004 • Four mosaics 02h, 08h, 14h, 20h • 02h, 08h, 14h 6 x 6 fields, 45’ centers • 20h deep strip 6 fields • Scan subtraction/projection • observe scan of 6 fields, 3m apart = 45’ • lose on 1/6 data to differencing (cf. ½ previously) • Point source projection • list of NVSS sources (extrapolation to 30 GHz unknown) • need 30 GHz GBT measurements to identify brightest srcs

  30. CBI Polarization Projections

  31. CBI Polarization Data Processing • Massive data processing exercise • 4 mosaics, 300 nights observing • more than 106 visibilities total! • scan projection over 3.5° requires fine gridding • more than 104 gridded estimators • Parallel computing critical • both gridding and likelihood now parallelized using MPI • using 256 node/ 512 proc McKenzie cluster at CITA • 2.4 GHz Intel Xeons, gigabit ethernet, 1.2 Tflops! • current limitation 1 GB memory per node • code development ongoing • currently 1 day per full run needed

  32. CBI Current Polarization Data • Currently data to May 2004 processed • Preliminary data analysis (still more tests pending) • if you sign the non-disclosure agreement…

  33. Conclusions • CMB interferometry competitive • straightforward analysis {RR,RL} → {TT,EE,BB,TE} • polarization systematics minimized • currently only measurements of EE (WMAP pending) • but, hard to scale up due to correlator complexity • CMB results • large l TT excess still significant • next gen small-scale experiments (SZA) will nail this! • possible running index ns(l) • marginal significance (probably overstated) • polarization observations successful • results very preliminary! still more tests…

  34. The CMB From NRAO HEMTs OVRO/BIMA

  35. The CBI Collaboration Caltech Team: Tony Readhead (Principal Investigator), John Cartwright, Alison Farmer, Russ Keeney, Brian Mason, Steve Miller, Steve Padin (Project Scientist), Tim Pearson, Walter Schaal, Martin Shepherd, Jonathan Sievers, Pat Udomprasert, John Yamasaki. Operations in Chile: Pablo Altamirano, Ricardo Bustos, Cristobal Achermann, Tomislav Vucina, Juan Pablo Jacob, José Cortes, Wilson Araya. Collaborators: Dick Bond (CITA), Leonardo Bronfman (University of Chile), John Carlstrom (University of Chicago), Simon Casassus (University of Chile), Carlo Contaldi (CITA), Nils Halverson (University of California, Berkeley), Bill Holzapfel (University of California, Berkeley), Marshall Joy (NASA's Marshall Space Flight Center), John Kovac (University of Chicago), Erik Leitch (University of Chicago), Jorge May (University of Chile), Steven Myers (National Radio Astronomy Observatory), Angel Otarola (European Southern Observatory), Ue-Li Pen (CITA), Dmitry Pogosyan (University of Alberta), Simon Prunet (Institut d'Astrophysique de Paris), Clem Pryke (University of Chicago). The CBI Project is a collaboration between the California Institute of Technology, the Canadian Institute for Theoretical Astrophysics, the National Radio Astronomy Observatory, the University of Chicago, and the Universidad de Chile. The project has been supported by funds from the National Science Foundation, the California Institute of Technology, Maxine and Ronald Linde, Cecil and Sally Drinkward, Barbara and Stanley Rawn Jr., the Kavli Institute,and the Canadian Institute for Advanced Research.

More Related