350 likes | 422 Views
This lecture provides an introduction to machine learning, including learning algorithms, training data, and various applications such as classification, time series prediction, regression, and clustering. It also explores market analysis, ecology, OCR, HWR, machine vision, text categorization, system diagnosis, and bioinformatics.
E N D
Lecture 1: Introduction to Machine Learning Isabelle Guyon isabelle@clopinet.com
What is Machine Learning? Learning algorithm Trained machine TRAINING DATA Answer ? Query
What for? • Classification • Time series prediction • Regression • Clustering
Market Analysis training examples Ecology OCR HWR 105 Machine Vision 104 Text Categorization 103 System diagnosis 102 Bioinformatics 10 inputs 10 102 103 104 105 Applications
Banking / Telecom / Retail • Identify: • Prospective customers • Dissatisfied customers • Good customers • Bad payers • Obtain: • More effective advertising • Less credit risk • Fewer fraud • Decreased churn rate
Biomedical / Biometrics • Medicine: • Screening • Diagnosis and prognosis • Drug discovery • Security: • Face recognition • Signature / fingerprint / iris verification • DNA fingerprinting 6
Computer / Internet • Computer interfaces: • Troubleshooting wizards • Handwriting and speech • Brain waves • Internet • Hit ranking • Spam filtering • Text categorization • Text translation • Recommendation 7
Conventions n X={xij} y ={yj} m xi a w
Learning problem Data matrix: X m lines = patterns (data points, examples): samples, patients, documents, images, … n columns = features: (attributes, input variables): genes, proteins, words, pixels, … Unsupervised learning Is there structure in data? Supervised learning Predict an outcome y. Colon cancer, Alon et al 1999
Some Learning Machines • Linear models • Kernel methods • Neural networks • Decision trees
Linear Models • f(x) = wx+b = Sj=1:n wj xj +b Linearity in the parameters, NOT in the input components. • f(x) = w F(x)+b = Sj wjfj(x) +b (Perceptron) • f(x) = Si=1:maik(xi,x) +b (Kernel method)
x1 w1 x2 w2 S f(x) wn xn b 1 Artificial Neurons Cell potential Axon Activation of other neurons Activation function Dendrites Synapses f(x) = w x + b McCulloch and Pitts, 1943
hyperplane x2 x3 x1 x2 x1 Linear Decision Boundary
x1 f1(x) w1 f2(x) x2 w2 S f(x) wN xn fN(x) b f(x) = w F(x) + b 1 Perceptron Rosenblatt, 1957
x2 x3 x2 x1 x1 NL Decision Boundary
x1 k(x2,x) k(x1,x) k(xm,x) a1 x2 a2 S am xn b f(x) = Siaik(xi,x) + b 1 k(. ,. ) is a similarity measure or “kernel”. Kernel Method Potential functions, Aizerman et al 1964
What is a Kernel? A kernel is: • a similarity measure • a dot product in some feature space: k(s, t) = F(s) F(t) But we do not need to know the F representation. Examples: • k(s, t) = exp(-||s-t||2/s2) Gaussian kernel • k(s, t) = (s t)qPolynomial kernel
Activation of another neuron xj wj y S Dendrite Synapse Hebb’s Rule wj wj + yi xij Axon Link to “Naïve Bayes”
Kernel “Trick” (for Hebb’s rule) • Hebb’s rule for the Perceptron: w = Si yiF(xi) f(x) = w F(x) = Si yiF(xi) F(x) • Define a dot product: k(xi,x) = F(xi) F(x) f(x) = Si yi k(xi,x)
Kernel “Trick” (general) • f(x) = Siai k(xi, x) • k(xi, x) = F(xi) F(x) • f(x) = w F(x) • w = SiaiF(xi) Dual forms
Simple Kernel Methods f(x) = Sai k(xi, x) k(xi, x) = F(xi).F(x) Potential Function algorithm aiai + yi if yif(xi)<0 (Aizerman et al 1964) Dual minover aiai + yi for min yif(xi) Dual LMS aiai + (yi - f(xi)) f(x) = w • F(x) Perceptron algorithm ww + yiF(xi) if yif(xi)<0 (Rosenblatt 1958) Minover (optimum margin) ww + yiF(xi)for min yif(xi) (Krauth-Mézard 1987) LMS regression ww + (yi- f(xi)) F(xi) w = SaiF(xi) i i (ancestor of SVM 1992, similar to kernel Adatron, 1998, and SMO, 1999)
S xj S S internal “latent” variables “hidden units” Multi-Layer Perceptron Back-propagation, Rumelhart et al, 1986
f2 All the data f1 At each step, choose the feature that “reduces entropy” most. Work towards “node purity”. Choose f2 Choose f1 Tree Classifiers CART (Breiman, 1984)orC4.5 (Quinlan, 1993)
Iris Data (Fisher, 1936) Figure from Norbert Jankowski and Krzysztof Grabczewski Linear discriminant Tree classifier versicolor setosa virginica Gaussian mixture Kernel method (SVM)
x2 x1 Fit / Robustness Tradeoff x2 x1 15
x2 x1 Performance evaluation f(x) < 0 f(x) < 0 x2 f(x) = 0 f(x) = 0 f(x) > 0 f(x) > 0 x1
x2 x1 Performance evaluation f(x) < -1 f(x) < -1 x2 f(x) = -1 f(x) = -1 f(x) > -1 f(x) > -1 x1
x2 x1 Performance evaluation f(x) < 1 f(x) < 1 x2 f(x) = 1 f(x) = 1 f(x) > 1 f(x) > 1 x1
ROC Curve For a given threshold on f(x), you get a point on the ROC curve. Ideal ROC curve 100% Actual ROC Positive class success rate (hit rate, sensitivity) Random ROC 0 100% 1 - negative class success rate (false alarm rate, 1-specificity)
ROC Curve For a given threshold on f(x), you get a point on the ROC curve. Ideal ROC curve (AUC=1) 100% Actual ROC Positive class success rate (hit rate, sensitivity) Random ROC (AUC=0.5) 0 AUC 1 0 100% 1 - negative class success rate (false alarm rate, 1-specificity)
What is a Risk Functional? A function of the parameters of the learning machine, assessing how much it is expected to fail on a given task. Examples: • Classification: • Error rate:(1/m) Si=1:m1(F(xi)yi) • 1- AUC • Regression: • Mean square error:(1/m) Si=1:m(f(xi)-yi)2
R[f(x,w)] Parameter space (w) w* How to train? • Define a risk functional R[f(x,w)] • Optimize it w.r.t. w (gradient descent, mathematical programming, simulated annealing, genetic algorithms, etc.) (… to be continued in the next lecture)
Summary • With linear threshold units (“neurons”) we can build: • Linear discriminant (including Naïve Bayes) • Kernel methods • Neural networks • Decision trees • The architectural hyper-parameters may include: • The choice of basis functions f (features) • The kernel • The number of units • Learning means fitting: • Parameters (weights) • Hyper-parameters • Be aware of the fit vs. robustness tradeoff
Want to Learn More? • Pattern Classification,R. Duda, P. Hart, and D. Stork.Standard pattern recognition textbook. Limited to classification problems. Matlab code. http://rii.ricoh.com/~stork/DHS.html • The Elements of statistical Learning: Data Mining, Inference, and Prediction. T. Hastie, R. Tibshirani, J. Friedman, Standard statistics textbook. Includes all the standard machine learning methods for classification, regression, clustering. R code. http://www-stat-class.stanford.edu/~tibs/ElemStatLearn/ • Linear Discriminants and Support Vector Machines, I. Guyon and D. Stork,In Smola et al Eds. Advances in Large Margin Classiers. Pages 147--169, MIT Press, 2000.http://clopinet.com/isabelle/Papers/guyon_stork_nips98.ps.gz • Feature Extraction: Foundations and Applications. I. Guyon et al, Eds.Book for practitioners with datasets of NIPS 2003 challenge, tutorials, best performing methods, Matlab code, teaching material.http://clopinet.com/fextract-book