1 / 28

Ananya Misra, Perry Cook Princeton University

Toward Synthesized Environments: A Survey of Analysis and Synthesis Methods for Sound Designers and Composers. Ananya Misra, Perry Cook Princeton University. Motivation. Multitude of sounds in the sonic landscape Multitude of algorithms

graham
Download Presentation

Ananya Misra, Perry Cook Princeton University

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Toward Synthesized Environments: A Survey of Analysis and Synthesis Methods for Sound Designers and Composers Ananya Misra, Perry Cook Princeton University

  2. Motivation • Multitude of sounds in the sonic landscape • Multitude of algorithms • Better knowledge of a variety of algorithms => empowerment to create rich sound scenes

  3. Some Related Surveys • Smith. “Viewpoints on the History of Digital Synthesis.” ICMC 1991. • Pope. “A Taxonomy of Computer Music.” Contemporary Music Review 1996. • Tolonen et al. “Evaluation of Modern Sound Synthesis Methods.” Tech. Rep. 1998. • Vercoe et al. “Structured Audio: Creation, Transmission, and Rendering of Parametric Sound Representations.” Proc. IEEE 1998. • Widmer et al. “Sound and Music Computing: Research Trends and Some Key Issues.” JNMR 2007. This one: from the perspective of creating complex environmental sound scenes or compositions

  4. Overview • Abstract synthesis algorithms • Synthesis from “scratch” • Synthesis from existing sounds • Concatenative techniques • Additive synthesis • Subtractive synthesis and other techniques • Analysis not for synthesis Disclaimer: No taxonomy is clean or 1-1 from method to class

  5. Abstract synthesis algorithms

  6. Oscillators • From analog days Sine wave Triangle wave Sawtooth wave Alarm clock Examples by ChucK

  7. Frequency Modulation • Modulation of one oscillator’s phase by another’s output Basic example Doorbells Examples by ChucK

  8. More • Circle maps as nonlinear oscillators (Essl, ICMC 2006) • Errant sound synthesis: “the potential of any algorithm cast into the audio range” (Collins, ICMC 2008) • Auditory display and sonification

  9. Synthesis from scratch Synthesis from physical or perceptual models, without the raw material of existing audio samples

  10. Physical models High-level parametric control over synthesized sound • Plucked string model, waveguides and more • Reed and bowstring models, singing voice synthesis, percussive sounds • Synthesis ToolKit => PeRColate (Max/MSP), ChucK, SuperCollider • Real-world contact / motion sounds Modal synthesis Gait modelingCook, 2002

  11. Perceptual models Give desired perceptual characteristics • For speech and singing (Cook, CMJ 1996): • Formant synthesizers • Formant wave functions (FOFs) (Rodet, CMJ 1984) • General: Feature-based synthesis (Hoffman, ICMC 2006) =>

  12. Synthesis from existing sounds Creation of sound from existing sound, synthesis by analysis

  13. Concatenative techniques • Rearrangement of samples in the time domain • Wavetable synthesis • Concatenative synthesis (Schwarz, JNMR 2006): • Source sound segmented into units • Target sound • Set of unit descriptors • Unit selection algorithm

  14. Concatenative techniques • Applications: singing, instruments, audio mosaicing • Granular synthesis: concatenating usually short “sound grains” (Truax, 1990)

  15. Concatenative techniques: granular synthesis • Formant wave functions, when using arbitrary sound samples • Dictionary-based methods with time-localized waveforms (Sturm, ICMC 2008) => analytical counterpart • TAPESTREA: granular synthesis by parametrically looping transformed events

  16. Concatenative techniques for sound textures • Splitting soundscapes into syllable-like segments (Hoskinson, ICMC 2001) • Soundscape generation from database of annotated sound files (Birchfield, ICMC 2005) • Fast sound texture synthesis using overlap-add (Fröjd, ICMC 2007) From Fröjd&Horner, 2007;algorithm offered in TAPESTREA

  17. Additive synthesis Spectral analysis, addition of resulting signals • Channel vocoder: bank of bandpass filters • Phase vocoder: FFT to get phase as well as magnitude of each frequency band • Pitch and time transformations (offered in TAPESTREA) • Cross-synthesis

  18. Additive synthesis: sinusoidal modeling • Speech signals can be modeled using a few sinusoids (McAulay 1986, Quatieri 1986) • Spectral modeling synthesis (Serra, 1989): sines + noise • Lemur/Loris, CLAM, SMS, SPEAR, AudioSculpt • Used to extract and transform some environmental sounds in TAPESTREA Transformed windchimes Baby chorus / cacophony

  19. Sines + Transients + Noise Decompose into transients (brief, noisy events) as well as sines and noise • Transient / onset detection techniques: • Time-domain envelope following (in TAPESTREA) • Comparing energy envelopes of original and residual noise signals (Levine, 1998) • Comparing energy in short and long signal segments (Verma, 1998) (in TAPESTREA) • Frequency-domain techniques

  20. Subtractive synthesis and linear predictive coding • Filtering a signal to shape it by subtracting unwanted components • LPC: Source-filter model where next = linear combination of previous samples (Atal, 1970) • Musical composition (Lansky, 1989) • Sound texture synthesis (Athineos, 2003; Zhu, 2004) Time-frequency LPC;Athineos&Ellis, 2003 Noise-excited LPC

  21. Other tools for sound textures • Wavelet-tree learning (Dubnov, 2002) (offered in TAPESTREA) • Parametrically modeling and transforming stochastic components (Miner, 2002) • Inferring statistical distributions of events (Zhu, 2003)

  22. Analysis not for synthesis Content-based analysis methods not necessarily designed for synthesis. May provide information to guide synthesis algorithms.

  23. Analyze to… • Represent an audio signal in structurally or perceptually meaningful ways • Understand and use a collection of sounds on a global level

  24. Representing a signal • Source separation: Computational auditory scene analysis (Ellis, 1992; Melih, 2000) • Automatic and manual grouping of partials offered in TAPESTREA • Source separation: Multiple fundamental frequency estimation (Klapuri, 2004) • Blind source separation (Hoffman, 2009) • Music transcription

  25. Understanding a collection • Comparison actions: content-based classification, search, recommendation, … • Automatic timbre recognition • Music information retrieval tools, e.g. MARSYAS

  26. Conclusions

  27. Advantages of parametric synthesis algorithms • Many algorithms may contribute to one simple piece • Many available tools: programming languages, specialized libraries, graphical software • Compression • Ability to re-render over and over with changes, interactively or in real-time • Rich palette of techniques for composers

  28. Taxonomy of methods by sounds

More Related