1 / 10

8-2 & 8-5 Review Objective: Apply knowledge of Integration by Parts and Partial Fractions

8-2 & 8-5 Review Objective: Apply knowledge of Integration by Parts and Partial Fractions. Miss Battaglia AP Calculus. Integration by Parts. If u and v are functions of x and have continuous derivatives, then. LIATE. Logs Inverse Trig Algebraic Trig Exponential. Derived from….

Download Presentation

8-2 & 8-5 Review Objective: Apply knowledge of Integration by Parts and Partial Fractions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 8-2 & 8-5 ReviewObjective: Apply knowledge of Integration by Parts and Partial Fractions Miss Battaglia AP Calculus

  2. Integration by Parts If u and v are functions of x and have continuous derivatives, then

  3. LIATE Logs Inverse Trig Algebraic Trig Exponential

  4. Derived from…

  5. Guidelines for Integration by Parts • Try letting dv be the most complicated portion of the integrand that fits a basic integration rule. Then u will be the remaining factor(s) of the integrand. • Try letting u be the portion of the integrand whose derivative is a function simpler than u. Then dbv will be the remaining factor(s) of the integrand. Note that dv always includes the dx of the original integrand.

  6. Integration by Parts Find

  7. Case 1: Denominator contains only linear factors • Factor the denominator • Break up the fraction on the right into a sum of fractions, where each factor of the denominator in Step 1 becomes the denominator of a separate fraction. Then put unknowns in the numerator of each fraction. • Multiply both sides of this equation by the denominator of the left side. • Take the roots of the linear factors and plug them –one at a time-into x in the equation from Step 3, and solve for unknowns. • Plug these results into the A and B in the equation from Step 2. • Split up the original integral into the partial fractions from Step 5 and you’re home free!

  8. Case 2: The denominator contains irreducible quadratic factors • Factor the denominator • Break up the fraction into a sum of “partial fractions” • Multiply both sides of this equation by the left-side denominator. • Take the roots of the linear factors and plug them-one at a time- into x in the equation from Step 3, and then solve. • Plug into Step 3 equation the known values of A and B and any two values for x not used in Step 4 to get a system of two equations in C and D. • Solve the system of equations. • Split up the original integral and integrate.

  9. Classwork/Homework • Worksheet

More Related