1 / 15

Channeled Ni-YSZ and Co-YSZ Anodes produced from Directionally Solidified Eutectics:

Channeled Ni-YSZ and Co-YSZ Anodes produced from Directionally Solidified Eutectics: Microstructural Stability M. A. Laguna-Bercero, A. Larrea*, R. I. Merino, J. I. Peña and V. M. Orera Instituto de Ciencia de Materiales de Aragón, C.S.I.C. – U. Zaragoza c/ María de Luna 3, E-50.018 Spain.

grant
Download Presentation

Channeled Ni-YSZ and Co-YSZ Anodes produced from Directionally Solidified Eutectics:

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Channeled Ni-YSZ and Co-YSZ Anodes produced from Directionally Solidified Eutectics: Microstructural Stability M. A. Laguna-Bercero, A. Larrea*, R. I. Merino, J. I. Peña and V. M. Orera Instituto de Ciencia de Materiales de Aragón, C.S.I.C. – U. Zaragoza c/ María de Luna 3, E-50.018 Spain *Presenting author: alarrea@unizar.es

  2. Outline • Introduction • Material preparation • Directional solidification of eutectics • Cermet properties • Composition & Microstructure • Ni-YSZ interfaces • Stability of the cermet microstructure • Ageing experiments • - Summary • SEM & TEM • Electrical conductivity • Hg porosimetry

  3. Directionally Solidified Eutectics DSE self-organized lamellar microstructure & Strong interphase bonding YSZ electrolyte deposited by MOCVD on a Ni-YSZ channeled cermet Channeled Ni-YSZ cermet YSZ Ni pore Fracture of a Ni-YSZ channeled cermet

  4. DIRECTIONAL SOLIDIFICATION 20 mm Directional Solidification of Eutectics Lamellar melt grown composite Conventional NiO-YSZ ceramic • Minimization of the interfacial energy • Diffusion at the solid-liquid interface

  5. 2√2p √x SV = l 31/4l • Minimization of the interfacial energy: • self-organized lamellar microstructure if vol% minority phase x> 28% • NiO-YSZ (x = 0.43) • CoO-YSZ (x = 0.39) • low energy interfaces (strong bonding) SV = 2/l l • Diffusion at the solid-liquid interface: • lamellar thickness controlled by the growth rate • l2 R = 117 mm2 mm/h (NiO-CaSZ)1 • l2 R = 116 mm2 mm/h (CoO-YSZ)2 L b a l 1 R.I. Merino et al. Recent Res. Devel. Mat. Sci. 4 (2003) 1-24. 2 J-i Echigoya and S. Hayashi, J. Crystal Growth 129 (1993) 699-705.

  6. Laser-Assisted directional solidification NiO-YSZ Plate laser beam heater Ceramic substrate

  7. wp vp after the NiO Ni reduction Molten zone vc wc Samples for microstructural stability experiments produced byThe Laser Floating Zone technique Ø = 1.5 mm l = 10 cm Rods • Microstructural characterization • Electronic conductivity • Hg porosimetry rod axis

  8. red. H2 Microstructure: YSZ channels & porous metal channels Ni-YSZ: 45.6 YSZ +54.4 porous-Ni 41% vol pore 59% vol metal 75 NiO – 25 8YSZ (mol%) (CTE: a = 10.8 x 10-6 K-1) 43% vol pore 57% vol metal Co-YSZ: 40.7 YSZ + 59.3 porous Co 80 CoO – 20 8YSZ (mol%) (CTE:a = 10.7 x 10-6 K-1) YSZ pore Co Ni-YSZ, fracture Co-YSZ, polished cross section

  9. Zr - YSZ Ni [110] [100] [100] [010] [110] [001] [001] 2 Å d = 2.94% Matching (002) Ni // (002)YSZ Christensen & Carter, J. Chem. Phys.114 (2001) 5816. J. I. Beltrán et al., Phys. Rev B 68 (2003) 075401. Works of separation from ab initio DFT calculations: WZr/N i= 5014 mJ/m2 WO/Ni = 5743 mJ/m2 sep sep

  10. (111) Ni // (002)YSZ 4 types of Ni-YSZ interfaces (002) Ni // (002)YSZ [110]YSZ – [110]NiO [110]YSZ – [100]NiO [100]YSZ – [110]NiO [100]YSZ – [100]NiO Polycrystalline Ni film deposited on a (100) cubic-ZrO2 substrate by MBE

  11. AGEING?: Microstructure Treatment in 4%H2-N2 at 900 ºC The lamellar microstructure and the low energy interfaces between metal and YSZ ensure a good microstructural stability of the cermets SEM & TEM: No microstructural evolution during the treatment Ni-YSZ 300 h Ni-YSZ 0 h Co-YSZ 300 h Co-YSZ 0 h

  12. AGEING?: Electrical conductivity rCermet rMetal 100 mA Measurements: RT - 4 point DC - RESISTIVITY ( in mWcm) rCermet Ni Co rMetal 112±11 37 0 hours CERMET 16 6 39 110±11 300 hours - - 6.84 6.24 METAL Bulk 256 0 h Ni-YSZ - - 37 286 [1] 300 h 833 0 h - Ni-YSZ - 122 [2] 1041 300 h [1] Simwonis, D., Tietz, F. & Stöver, D., Solid State Ionics, 2000, 132, 241-251. [2] Skartmousos, D., Tsoga, A., Noumidis, A. & Nikolopoulos, P., Solid State Ionics, 2000, 135, 439-444.

  13. AGEING?: Hg porosimetry PORE SIZE DISTRIBUTION Co-YSZ Cermet porosity 0 hours 300 hourss % open % theoret. % relative 15.2 26.2 58.0 13.8 26.2 52.3 (open/theoret) Ni-YSZ 0 hours300 hours % open % theoret. % relative 14.8 23.4 63.2 16.0 23.4 68.5 (open/theoret) Diameter (µm)

  14. Summary • Channelled Ni-YSZ and Co-YSZ cermets for use in SOFC • Alternating channels (400 nm wide) of YSZ and porous metal • Strong Ni-YSZ interfacial bonding • The lamellar microstructure and the strong bonding between the YSZ and the metal prevent the coarsening of the metal particles in working conditions • After 300 h in 4% H2-N2 at 900 ºC • No microstructural evolution in SEM & TEM observations. • No drop in electronic conductivity. • No significant pore evolution.

  15. Acknowledgments: Ministerio de Ciencia y Tecnología (Spain), Project MAT2003-1182. I3P Program, financed by the European Union.

More Related