1 / 7

Comparing Graphs of Quadratic Functions

Learn how to graph quadratic functions of the form y = ax^2 and compare them to the graph of y = x^2. Includes step-by-step instructions and examples.

greathouse
Download Presentation

Comparing Graphs of Quadratic Functions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. EXAMPLE 1 Graph a function of the form y = ax2 Graphy = 2x2. Compare the graph with the graph ofy = x2. SOLUTION STEP 1 Make a table of values fory = 2x2. STEP 2 Plot the points from the table. STEP 3 Draw a smooth curve through the points.

  2. EXAMPLE 1 Graph a function of the form y = ax2 STEP 4 Compare the graphs of y = 2x2and y = x2. Both open up and have the same vertex and axis of symmetry. The graph of y = 2x2 is narrower than the graph of y = x2.

  3. x2 + 3 x2 + 3 12 12 Make a table of values for y = – EXAMPLE 2 Graph a function of the form y = ax2 + c Graph y = – Compare the graph with the graph of y = x2 SOLUTION STEP 1 STEP 2 Plot the points from the table. STEP 3 Draw a smooth curve through the points.

  4. x2 + 3 x2 + 3 12 12 EXAMPLE 2 Graph a function of the form y = ax2 Compare the graphs of y = – and y = x2. Both graphs have the same axis of symmetry. However, the graph of y = – opens down and is wider than the graph of y = x2. Also, its vertex is 3 units higher. STEP 4

  5. for Examples 1 and 2 GUIDED PRACTICE Graph the function. Compare the graph with the graph of y =x2. 1. y = – 4x2 ANSWER Same axis of symmetry and vertex, opens down, and is narrower

  6. ANSWER Same axis of symmetry, vertex is shifted down 5 units, and opens down for Examples 1 and 2 GUIDED PRACTICE 2. y = – x2 – 5

  7. x2 + 2 14 for Examples 1 and 2 GUIDED PRACTICE 3. f(x)= ANSWER Same axis of symmetry, vertex is shifted up 2 units, opens up, and is wider

More Related