1 / 72

CS 267: Applications of Parallel Computers Lecture 18 -- Structured Grids

Learn efficient methods for solving Partial Differential Equations (PDEs) on structured grids using algorithms like Dense LU, Conjugate Gradient, and Jacobi. Dive into solving Poisson's equation in 1D, 2D, and 3D. Understand explicit solutions, matrix views, and practical approaches for hyperbolic, elliptic, and parabolic problems. Explore efficient Parallel Random Access Machine (PRAM) algorithms for dense and sparse matrices. Enhance your knowledge of computational patterns and key motifs in solving PDEs.

greening
Download Presentation

CS 267: Applications of Parallel Computers Lecture 18 -- Structured Grids

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CS 267: Applications of Parallel ComputersLecture 18 -- Structured Grids Jim Demmel and Horst D. Simon demmel@cs.berkeley.edu hdsimon@eecs.berkeley.edu http://www.cs.berkeley.edu/~demmel/cs267_Spr10/

  2. Motifs The Motifs (formerly “Dwarfs”) from “The Berkeley View” (Asanovic et al.) Motifs form key computational patterns Topic of this lecture CS267 Lecture 20 2

  3. Outline • Review PDEs • Overview of Methods for Poisson Equation • Jacobi’s method • Red-Black SOR method • Conjugate Gradient • Sparse LU (Lecture 17, 3/16/10, Sherry Li) • FFT (Lecture 22, 4/1/10 ) • Multigrid CS267 Lecture 20

  4. Solving PDEs ° Hyperbolic problems (waves): • Sound wave(position, time) • Use explicit time-stepping • Solution at each point depends on neighbors at previous time • Elliptic (steady state) problems: • Electrostatic Potential (position) • Everything depends on everything else • This means locality is harder to find than in hyperbolic problems • Parabolic (time-dependent) problems: • Temperature(position,time) • Involves an elliptic solve at each time-step • Focus on elliptic problems • Canonical example is the Poisson equation 2u/x2 + 2u/y2 + 2u/z2 = f(x,y,z) CS267 Lecture 20

  5. Explicit Solution of PDEs • Explicit methods often used for hyperbolic PDEs • Stability limits size of time-step • Computation corresponds to • Matrix vector multiply • Combine nearest neighbors on grid • Use finite differences with u[j,i] as the solution at • timet= i* (i = 0,1,2,…)and • position x = j*h (j=0,1,…,N=1/h) • initial conditions on u[j,0] • boundary conditions on u[0,i] and u[N,i] • At each timestep i = 0,1,2,... i i=5 i=4 i=3 i=2 i=1 i=0 For j=0 to N u[j,i+1]= z*u[j-1,i]+ (1-2*z)*u[j,i] + z*u[j+1,i] wherez =C*/h2 j CS267 Lecture 20 u[0,0] u[1,0] u[2,0] u[3,0] u[4,0] u[5,0]

  6. 1-2z z z 1-2z z z 1-2z z z 1-2z z z 1-2z Graph and “3 pointstencil” = I – z*L, L = T = z z 1-2z 2 -1 -1 2 -1 -1 2 -1 -1 2 -1 -1 2 Matrix View of Explicit Method for Heat Equation • u[j,i+1]= z*u[j-1,i]+ (1-2*z)*u[j,i] + z*u[j+1,i] • u[ :, i+1] = T * u[ :, i] where T is tridiagonal: • L called Laplacian (in 1D) • For a 2D mesh (5 point stencil) the Laplacian is pentadiagonal (5 nonzeros per row, along diagonals) • For a 3D mesh there are 7 nonzeros per row CS267 Lecture 20

  7. Graph and “stencil” -1 2 -1 T = Poisson’s equation in 1D: 2u/x2 = f(x) 2 -1 -1 2 -1 -1 2 -1 -1 2 -1 -1 2 CS267 Lecture 20

  8. 2D Poisson’s equation • Similar to the 1D case, but the matrix T is now • 3D is analogous Graph and “stencil” 4 -1 -1 -1 4 -1 -1 -1 4 -1 -1 4 -1 -1 -1 -1 4 -1 -1 -1 -1 4 -1 -1 4 -1 -1 -1 4 -1 -1 -1 4 -1 -1 4 -1 T = -1 CS267 Lecture 20

  9. Algorithms for 2D (3D) Poisson Equation (N = n2(n3) vars) Algorithm Serial PRAM Memory #Procs • Dense LU N3 N N2 N2 • Band LU N2 (N7/3) N N3/2 (N5/3) N (N4/3) • Jacobi N2(N5/3) N (N2/3) N N • Explicit Inv. N2 log N N2 N2 • Conj.Gradients N3/2 (N4/3) N1/2(1/3) *log N N N • Red/Black SOR N3/2 (N4/3) N1/2 (N1/3) N N • Sparse LU N3/2 (N2)N1/2 N*log N (N4/3) N • FFT N*log N log N N N • Multigrid N log2 N N N • Lower bound N log N N PRAM is an idealized parallel model with zero cost communication Reference: James Demmel, Applied Numerical Linear Algebra, SIAM, 1997. CS267 Lecture 20

  10. Overview of Algorithms on n x n grid (n x n x n grid) (1) • Sorted in two orders (roughly): • from slowest to fastest on sequential machines. • from most general (works on any matrix) to most specialized (works on matrices “like” T). • Dense LU: Gaussian elimination; works on any N-by-N matrix. • Band LU: Exploits the fact that T is nonzero only on N1/2 (N2/3) diagonals nearest main diagonal. • Jacobi: Essentially does matrix-vector multiply by T in inner loop of iterative algorithm. • Explicit Inverse: Assume we want to solve many systems with T, so we can precompute and store inv(T) “for free”, and just multiply by it (but still expensive!). • Conjugate Gradient: Uses matrix-vector multiplication, like Jacobi, but exploits mathematical properties of T that Jacobi does not. • Red-Black SOR (successive over-relaxation): Variation of Jacobi that exploits yet different mathematical properties of T. Used in multigrid schemes. • Sparse LU: Gaussian elimination exploiting particular zero structure of T. • FFT(fast Fourier transform): Works only on matrices very like T. • Multigrid: Also works on matrices like T, that come from elliptic PDEs. • Lower Bound: Serial (time to print answer); parallel (time to combine N inputs). • Details in class notes and www.cs.berkeley.edu/~demmel/ma221. CS267 Lecture 20

  11. Overview of Algorithms on n x n grid (n x n x n grid) (2) • Dimension = N = n2 in 2D (=n3 in 3D) • Bandwidth = BW = n in 2D (=n2 in 3D) • Condition number = k = n2 in 2D or 3D • #its = number of iterations • SpMV = Sparse-matrix-vector-multiply • Dense LU: • cost = N3 (serial) or N (parallel, with N2 procs) • Band LU: • cost = N * BW2 (serial) or N (parallel with BW2 procs) • Jacobi: • cost = cost(SpMV) * #its, #its = k. • Conjugate Gradient: • cost = (cost(SpMV) + cost(dot prod))* #its, #its = sqrt(k) • Red-Black SOR: • cost = cost(SpMV) * #its, #its = sqrt(k) • Iterative algorithms need different assumptions for convergence analysis SpMV cost is cost of nearest neighbor relaxation, which is O(N) CS267 Lecture 20

  12. Jacobi’s Method • To derive Jacobi’s method, write Poisson as: u(i,j) = (u(i-1,j) + u(i+1,j) + u(i,j-1) + u(i,j+1) + b(i,j))/4 • Let u(i,j,m) be approximation for u(i,j) after m steps u(i,j,m+1) = (u(i-1,j,m) + u(i+1,j,m) + u(i,j-1,m) + u(i,j+1,m) + b(i,j)) / 4 • I.e., u(i,j,m+1) is a weighted average of neighbors • Motivation: u(i,j,m+1) chosen to exactly satisfy equation at (i,j) • Steps to converge proportional to problem size, N=n2 • See Lecture 24 of www.cs.berkeley.edu/~demmel/cs267_Spr99 • Therefore, serial complexity is O(N2) CS267 Lecture 20

  13. Convergence of Nearest Neighbor Methods • Jacobi’s method involves nearest neighbor computation on nxn grid (N = n2) • So it takes O(n) = O(sqrt(N)) iterations for information to propagate • E.g., consider a rhs (b) that is 0, except the center is 1 • The exact solution looks like: Even in the best case, any nearest neighbor computation will take n/2 steps to propagate on an nxn grid CS267 Lecture 20

  14. Convergence of Nearest Neighbor Methods CS267 Lecture 20

  15. Parallelizing Jacobi’s Method • Reduces to sparse-matrix-vector multiply by (nearly) T U(m+1) = (T/4 - I) * U(m) + B/4 • Each value of U(m+1) may be updated independently • keep 2 copies for iterations m and m+1 • Requires that boundary values be communicated • if each processor owns n2/p elements to update • amount of data communicated, n/p per neighbor, is relatively small if n>>p CS267 Lecture 20

  16. Locality Optimizations in Jacobi • Nearest neighbor update in Jacobi has: • Good spatial locality (for regular mesh): traverse rows/columns • Poor temporal locality: few flops per mesh point • E.g., on 2D mesh: 4 adds and 1 multiply for 5 loads and 1 store • For both parallel and single processors, may trade off extra computation for reduced memory operations • Idea: for each subgrid, do multiple Jacobi iterations • Size of subgrid shrinks on each iteration, so start with larger one • Used for uniprocessors: • Rescheduling for Locality, Michelle Mills Strout: • www-unix.mcs.anl.gov/~mstrout • Cache-efficient multigrid algorithms, Sid Chatterjee • And parallel machines, including “tuning” for grids • Ian Foster et al, SC2001 CS267 Lecture 20

  17. Redundant Ghost Nodes in Jacobi • Overview of Memory Hierarchy Optimization • Can be used on unstructured meshes • Size of ghost region (and redundant computation) depends on network/memory speed vs. computation To compute green Copy yellow Compute blue CS267 Lecture 20

  18. Improvements on Jacobi • Similar to Jacobi: u(i,j,m+1) is computed as a linear combination of neighbors • Numeric coefficients and update order are different • Based on 2 improvements over Jacobi • Use “most recent values” of u that are available, since these are probably more accurate • Update value of u(m+1) “more aggressively” at each step • First, note that while evaluating sequentially • u(i,j,m+1) = (u(i-1,j,m) + u(i+1,j,m) … some of the values for m+1 are already available • u(i,j,m+1) = (u(i-1,j,latest) + u(i+1,j,latest) … where latest is either m or m+1 CS267 Lecture 20

  19. Gauss-Seidel • Updating left-to-right row-wise order, we get the Gauss-Seidel algorithm for i = 1 to n for j = 1 to n u(i,j,m+1) = (u(i-1,j,m+1) + u(i+1,j,m) + u(i,j-1,m+1) + u(i,j+1,m) + b(i,j)) / 4 • Cannot be parallelized, because of dependencies, so instead we use a “red-black” order forall black points u(i,j) u(i,j,m+1) = (u(i-1,j,m) + … forall red points u(i,j) u(i,j,m+1) = (u(i-1,j,m+1) + … • For general graph, use graph coloring • Can use repeated Maximal Independent Sets to color • Graph(T) is bipartite => 2 colorable (red and black) • Nodes for each color can be updated simultaneously • Still Sparse-matrix-vector multiply, using submatrices CS267 Lecture 20

  20. Successive Overrelaxation (SOR) • Red-black Gauss-Seidel converges twice as fast as Jacobi, but there are twice as many parallel steps, so the same in practice • To motivate next improvement, write basic step in algorithm as: u(i,j,m+1) = u(i,j,m) + correction(i,j,m) • If “correction” is a good direction to move, then one should move even further in that direction by some factor w>1 u(i,j,m+1) = u(i,j,m) + w * correction(i,j,m) • Called successive overrelaxation (SOR) • Parallelizes like Jacobi (Still sparse-matrix-vector multiply…) • Can prove w = 2/(1+sin(p/(n+1)) ) for best convergence • Number of steps to converge = parallel complexity = O(n), instead of O(n2) for Jacobi • Serial complexity O(n3) = O(N3/2), instead of O(n4) = O(N2) for Jacobi CS267 Lecture 20

  21. Conjugate Gradient (CG) for solving A*x = b • This method can be used when the matrix A is • symmetric, i.e., A = AT • positive definite, defined equivalently as: • all eigenvalues are positive • xT * A * x > 0 for all nonzero vectors s • a Cholesky factorization, A = L*LT exists • Algorithm maintains 3 vectors • x = the approximate solution, improved after each iteration • r = the residual, r = A*x - b • p = search direction, also called the conjugate gradient • One iteration costs • Sparse-matrix-vector multiply by A (major cost) • 3 dot products, 3 saxpys (scale*vector + vector) • Converges in O(n) = O(N1/2) steps, like SOR • Serial complexity = O(N3/2) • Parallel complexity = O(N1/2 log N), log N factor from dot-products CS267 Lecture 20

  22. Conjugate Gradient Algorithm for Solving Ax=b • Initial guess x • r = b – A*x, j=1 • Repeat • rho = rT*r … dot product • If j=1, p = r, else beta = rho/old_rho, p = r + beta*p, endif … saxpy • q = A*p … sparse matrix vector multiply • alpha = rho / pT * q … dot product • x = x + alpha * p … saxpy • r = r – alpha * q … saxpy • old_rho = rho; j=j+1 • Until rho small enough CS267 Lecture 20

  23. Algorithms for 2D (3D) Poisson Equation (N = n2(n3) vars) Algorithm Serial PRAM Memory #Procs • Dense LU N3 N N2 N2 • Band LU N2 (N7/3) N N3/2 (N5/3) N (N4/3) • Jacobi N2 (N5/3) N (N2/3) N N • Explicit Inv. N2 log N N2 N2 • Conj.Gradients N3/2 (N4/3) N1/2(1/3) *log N N N • Red/Black SOR N3/2 (N4/3) N1/2 (N1/3) N N • Sparse LU N3/2 (N2)N1/2 N*log N (N4/3) N • FFT N*log N log N N N • Multigrid N log2 N N N • Lower bound N log N N PRAM is an idealized parallel model with zero cost communication Reference: James Demmel, Applied Numerical Linear Algebra, SIAM, 1997. CS267 Lecture 20

  24. 2D Poisson’s equation • Similar to the 1D case, but the matrix T is now • 3D is analogous Graph and “stencil” 4 -1 -1 -1 4 -1 -1 -1 4 -1 -1 4 -1 -1 -1 -1 4 -1 -1 -1 -1 4 -1 -1 4 -1 -1 -1 4 -1 -1 -1 4 -1 -1 4 -1 T = -1 CS267 Lecture 20

  25. Multigrid Motivation • Recall that Jacobi, SOR, CG, or any other sparse-matrix-vector-multiply-based algorithm can only move information one grid cell at a time • Take at least n steps to move information across n x n grid • Can show that decreasing error by fixed factor c<1 takes W(log n) steps • Convergence to fixed error < 1 takes W(log n ) steps • Therefore, converging in O(1) steps requires moving information across grid faster than to one neighboring grid cell per step CS267 Lecture 20

  26. Multigrid Methods • We studied several iterative methods • Jacobi, SOR, Guass-Seidel, Red-Black variations, Conjugate Gradients (CG) • All use sparse matrix-vector multiply (nearest neighbor communication on grid) • Key problem with iterative methods is that: • detail (short wavelength) is correct • convergence controlled by coarse (long wavelength) structure • In simple methods one needs of order N2 iterations to get good results • Ironically, one goes to large N (fine mesh) to get detail • If all you wanted was coarse structure, a smaller mesh would be fine • Basic idea in multigrid is key in many areas of science • Solve a problem at multiple scales • We get coarse structure from small N and fine detail from large N • Good qualitative idea but how do we implement? CS267 Lecture 20 Slide source: Geoffrey Fox and (indirectly) Ulrich Ruede

  27. Take Laplace’s equation in the Unit Square with initial guess as  = 0 and boundary conditions that are zero except on one side For N=31 x 31 Grid it takes around 1000 (N2) iterations to get a reasonable answer Gauss Seidel is Slow I Boundary Conditions Exact Solution CS267 Lecture 20 Slide source: Geoffrey Fox and (indirectly) Ulrich Ruede

  28. Gauss Seidel is Slow II 1 Iteration 10 Iterations 1000 Iterations 100 Iterations CS267 Lecture 20 Slide source: Geoffrey Fox and (indirectly) Ulrich Ruede

  29. Multigrid Overview • Basic Algorithm: • Replace problem on fine grid by an approximation on a coarser grid • Solve the coarse grid problem approximately, and use the solution as a starting guess for the fine-grid problem, which is then iteratively updated • Solve the coarse grid problem recursively, i.e. by using a still coarser grid approximation, etc. • Success depends on coarse grid solution being a good approximation to the fine grid CS267 Lecture 20

  30. Same Big Idea used elsewhere • Replace fine problem by coarse approximation, recursively • Multilevel Graph Partitioning (METIS): • Replace graph to be partitioned by a coarser graph, obtained via Maximal Independent Set • Given partitioning of coarse grid, refine using Kernighan-Lin • Barnes-Hut (and Fast Multipole Method) for computing gravitational forces on n particles in O(n log n) time: • Approximate particles in box by total mass, center of gravity • Good enough for distant particles; for close ones, divide box recursively • All examples depend on coarse approximation being accurate enough (at least if we are far enough away) CS267 Lecture 20

  31. Multigrid uses Divide-and-Conquer in 2 Ways • First way: • Solve problem on a given grid by calling Multigrid on a coarse approximation to get a good guess to refine • Second way: • Think of error as a sum of sine curves of different frequencies • Each call to Multigrid responsible for suppressing coefficients of sine curves of the lower half of the frequencies in the error (pictures later) CS267 Lecture 20

  32. Multigrid Sketch in 1D • Consider a 2m+1 grid in 1D for simplicity • Let P(i) be the problem of solving the discrete Poisson equation on a 2i+1 grid in 1D • Write linear system as T(i) * x(i) = b(i) • P(m) , P(m-1) , … , P(1) is sequence of problems from finest to coarsest CS267 Lecture 20

  33. Multigrid Sketch in 2D • Consider a 2m+1 by 2m+1 grid in 2D • Let P(i) be the problem of solving the discrete Poisson equation on a 2i+1 by 2i+1 grid in 2D • Write linear system as T(i) * x(i) = b(i) • P(m) , P(m-1) , … , P(1) is sequence of problems from finest to coarsest CS267 Lecture 20

  34. Relax Restrict Interpolate Relax Relax Relax Relax Multigrid Hierarchy CS267 Lecture 20 Slide source: Geoffrey Fox

  35. k k+1 Basic Multigrid Ideas • In picture, relaxis application of standard iteration scheme • “solve” short wavelength solution at a given level • i.e. use Jacobi, Gauss-Seidel, Conjugate Gradient • Interpolation is taking a solution at a coarser grid and interpolating to find a solution at half the grid size • Restriction is taking solution at given grid and averaging to find solution at coarser grid Restrict Interpolate CS267 Lecture 20 Slide source: Geoffrey Fox

  36. Multigrid Operators • For problem P(i) at varying coarsening levels (i, grid size grows with i): • b(i) is the Right Hand Side (RHS) and • x(i) is the current estimated solution • All the following operators just average values on neighboring grid points (so information moves fast on coarse grids) • The restriction operator R(i) maps P(i) to P(i-1) • Restricts problem on fine grid P(i) to coarse grid P(i-1) • Uses sampling or averaging • b(i-1)= R(i) (b(i)) • The interpolation operator In(i-1) maps approx. solution x(i-1) to x(i) • Interpolates solution on coarse grid P(i-1) to fine grid P(i) • x(i) = In(i-1)(x(i-1)) • The solution operator S(i) takes P(i) and improves solution x(i) • Uses “weighted” Jacobi or SOR on single level of grid • x improved (i) = S(i) (b(i), x(i)) • Overall algorithm, then details of operators • both live on grids of size 2i-1 CS267 Lecture 20

  37. Multigrid Operators • For problem P(i) at varying coarsening levels (i, grid size grows with i): • b(i) is the Right Hand Side (RHS) and • x(i) is the current estimated solution • All the following operators just average values on neighboring grid points (so information moves fast on coarse grids) • The restriction operator R(i) maps P(i) to P(i-1) • Restricts problem on fine grid P(i) to coarse grid P(i-1) • Uses sampling or averaging • b(i-1)= R(i) (b(i)) • The interpolation operator In(i-1) maps approx. solution x(i-1) to x(i) • Interpolates solution on coarse grid P(i-1) to fine grid P(i) • x(i) = In(i-1)(x(i-1)) • The solution operator S(i) takes P(i) and improves solution x(i) • Uses “weighted” Jacobi or SOR on single level of grid • x improved (i) = S(i) (b(i), x(i)) • Overall algorithm, then details of operators • both live on grids of size 2i-1 CS267 Lecture 20

  38. Multigrid Operators • For problem P(i) at varying coarsening levels (i, grid size grows with i): • b(i) is the Right Hand Side (RHS) and • x(i) is the current estimated solution • All the following operators just average values on neighboring grid points (so information moves fast on coarse grids) • The restriction operator R(i) maps P(i) to P(i-1) • Restricts problem on fine grid P(i) to coarse grid P(i-1) • Uses sampling or averaging • b(i-1)= R(i) (b(i)) • The interpolation operator In(i-1) maps approx. solution x(i-1) to x(i) • Interpolates solution on coarse grid P(i-1) to fine grid P(i) • x(i) = In(i-1)(x(i-1)) • The solution operator S(i) takes P(i) and improves solution x(i) • Uses “weighted” Jacobi or SOR on single level of grid • x improved (i) = S(i) (b(i), x(i)) • Overall algorithm, then details of operators • both live on grids of size 2i-1 CS267 Lecture 20

  39. Multigrid Operators • For problem P(i) at varying coarsening levels (i, grid size grows with i): • b(i) is the Right Hand Side (RHS) and • x(i) is the current estimated solution • All the following operators just average values on neighboring grid points (so information moves fast on coarse grids) • The restriction operator R(i) maps P(i) to P(i-1) • Restricts problem on fine grid P(i) to coarse grid P(i-1) • Uses sampling or averaging • b(i-1)= R(i) (b(i)) • The interpolation operator In(i-1) maps approx. solution x(i-1) to x(i) • Interpolates solution on coarse grid P(i-1) to fine grid P(i) • x(i) = In(i-1)(x(i-1)) • The solution operator S(i) takes P(i) and improves solution x(i) • Uses “weighted” Jacobi or SOR on single level of grid • x improved (i) = S(i) (b(i), x(i)) • Overall algorithm, then details of operators • both live on grids of size 2i-1 CS267 Lecture 20

  40. Multigrid V-Cycle Algorithm Function MGV ( b(i), x(i) ) … Solve T(i)*x(i) = b(i) given b(i) and an initial guess for x(i) … return an improved x(i) if (i = 1) compute exact solution x(1) of P(1)only 1 unknown return x(1) else solve recursively x(i) = S(i) (b(i), x(i)) improve solution by damping high frequency error r(i) = T(i)*x(i) - b(i) compute residual d(i) = In(i-1) ( MGV( R(i) ( r(i) ), 0 )) solveT(i)*d(i) = r(i)recursively x(i) = x(i) - d(i) correct fine grid solution x(i) = S(i) ( b(i), x(i) ) improve solution again return x(i) Function MGV ( b(i), x(i) ) … Solve T(i)*x(i) = b(i) given b(i) and an initial guess for x(i) … return an improved x(i) if (i = 1) compute exact solution x(1) of P(1) only 1 unknown return x(1) else x(i) = S(i) (b(i), x(i)) improve solution by damping high frequency error r(i) = T(i)*x(i) - b(i) compute residual d(i) = In(i-1) ( MGV( R(i) ( r(i) ), 0 ) ) solve T(i)*d(i) = r(i) recursively x(i) = x(i) - d(i) correct fine grid solution x(i) = S(i) ( b(i), x(i) ) improve solution again return x(i) CS267 Lecture 20

  41. This is called a V-Cycle • Just a picture of the call graph • In time a V-cycle looks like the following CS267 Lecture 20

  42. Complexity of a V-Cycle • On a serial machine • Work at each point in a V-cycle is O(the number of unknowns) • Cost of Level i is (2i-1)2 = O(4 i) for a 2D grid • If finest grid level is m, total time is: S O(4 i) = O( 4 m) for a 2D grid = O(# unknowns) in general • On a parallel machine (PRAM) • with one processor per grid point and free communication, each step in the V-cycle takes constant time • Total V-cycle time is O(m) = O(log #unknowns) m i=1 CS267 Lecture 20

  43. Full Multigrid (FMG) • Intuition: • improve solution by doing multiple V-cycles • avoid expensive fine-grid (high frequency) cycles • analysis of why this works is beyond the scope of this class Function FMG (b(m), x(m)) … return improved x(m) given initial guess compute the exact solution x(1) of P(1) for i=2 to m x(i) = MGV ( b(i), In (i-1) (x(i-1) ) ) • In other words: • Solve the problem with 1 unknown • Given a solution to the coarser problem, P(i-1) , map it to starting guess for P(i) • Solve the finer problem using the Multigrid V-cycle CS267 Lecture 20

  44. Full Multigrid Cost Analysis • One V for each call to FMG • people also use Ws and other compositions • Serial time: S O(4 i) = O( 4 m) = O(# unknowns) • PRAM time: S O(i) = O( m 2) = O( log2 # unknowns) m i=1 m i=1 CS267 Lecture 20

  45. Complexity of Solving Poisson’s Equation • Theorem: error after one FMG call: • error_after <= (.5* error_before) • independent of # unknowns • At least 1 bit each time • Corollary: We can make the error < any fixed tolerance in a fixed number of steps, independent of size of finest grid • This is the most important convergence property of MG, distinguishing it from all other methods, which converge more slowly for large grids • Total complexity just proportional to cost of one FMG call CS267 Lecture 20

  46. The Solution Operator S(i) - Details • The solution operator, S(i), is a weighted Jacobi • Consider the 1D problem • At level i, pure Jacobi replaces: x(j) := 1/2 (x(j-1) + x(j+1) + b(j) ) • Weighted Jacobi uses: x(j) := 1/3 (x(j-1) + x(j) + x(j+1) + b(j) ) • In 2D, similar average of nearest neighbors CS267 Lecture 20

  47. Weighted Jacobi chosen to damp high frequency error Initial error “Rough” Lots of high frequency components Norm = 1.65 Error after 1 weighted Jacobi step “Smoother” Less high frequency component Norm = 1.06 Error after 2 weighted Jacobi steps “Smooth” Little high frequency component Norm = .92, won’t decrease much more CS267 Lecture 20

  48. Multigrid as Divide and Conquer Algorithm • Each level in a V-Cycle reduces the error in one part of the frequency domain CS267 Lecture 20

  49. The Restriction Operator R(i) - Details • The restriction operator, R(i), takes • a problem P(i) with RHS b(i) and • maps it to a coarser problem P(i-1) with RHS b(i-1) • In 1D, average values of neighbors • xcoarse(i) = 1/4 * xfine(i-1) + 1/2 * xfine(i) + 1/4 * xfine(i+1) • In 2D, average with all 8 neighbors (N,S,E,W,NE,NW,SE,SW) CS267 Lecture 20

  50. Interpolation Operator In(i-1): details • The interpolation operator In(i-1), takes a function on a coarse grid P(i-1) , and produces a function on a fine grid P(i) • In 1D, linearly interpolate nearest coarse neighbors • xfine(i) = xcoarse(i) if the fine grid point i is also a coarse one, else • xfine(i) = 1/2 * xcoarse(left of i) + 1/2 * xcoarse(right of i) • In 2D, interpolation requires averaging with 4 nearest neighbors (NW,SW,NE,SE) CS267 Lecture 20

More Related