440 likes | 564 Views
Architecture and Design Automation for Application-Specific Processors. Philip Brisk Assistant Professor Dept. of Computer Science and Engineering University of California, Riverside. IEEE 9 th International Conference on ASIC (ASICON) Xiamen, China October 26, 2011.
E N D
Architecture and Design Automation for Application-Specific Processors Philip Brisk Assistant Professor Dept. of Computer Science and Engineering University of California, Riverside IEEE 9th International Conference on ASIC (ASICON) Xiamen, China October 26, 2011
The vast majority of slides in this presentation are taken from the Ph.D. Thesis of my friend and collaborator, Dr. Theo Kluter(Ph.D., EPFL, 2010) Acknowledgment
Five Stage RISC Pipeline I$ RF D$ RF Fetch Decode Execute Memory Write-back
Application-Specific Custom Unit (ASCU) for Instruction Set Extensions (ISEs) ASCU I$ RF D$ RF Fetch Decode Execute Memory Write-back
Assembly code with ISEs Applications Compiler Automatic ISE Identification HW Synthesis ASCU I$ RF D$ RF Fetch Decode Execute Memory Write-back
Overview • Architecture • Compilation and Synthesis • Conclusion
Overview • Architecture • Custom ISE Logic • I/O Bandwidth • Local memories and coherence • Compilation and Synthesis • Conclusion
Example: Luminance Conversion in JPEG Compression • 19 cycles in software • 17-bit values • Fixed-point
Custom Hardware Implementation One single-ported memory • 4 – 5 cycles (3 loads, 1 arithmetic, 1 store) • Speedup: 3.8x – 4.8x R, G, B, and Y Memories • 1 cycle for everything • Speedup: 19x
Custom ISE Logic Architectural Limitations • Load data from memory into RF • RF I/O bandwidth Performance • 7 cycles (3 loads, 2 ASCU, 1 store) • Speedup: 3.1x RF has 1 write port RF has 2 read ports
Overview • Architecture • Custom ISE Logic • I/O Bandwidth • Local memories and coherence • Compilation and Synthesis • Conclusion
I/O Bandwidth Constraint • AES Algorithm • Single round • 4 stages • Best ISE • 22 inputs • 22 outputs • [Verma, Brisk, and Ienne, CASES 2007 & TCAD 2010] • RF I/O constraints • Noticeable slowdown
Pipeline Forwarding I/O Bandwidth limitations • Input bandwidth depends on number of pipeline stages • Does not increase output bandwidth Complicates instruction scheduling 1 output [Jayaseelan et al., DAC 2006]
Register File Clustering I/O Bandwidth limitations • Input bandwidth depends on number clusters • Does not increase output bandwidth Compiler must eliminate inter-cluster copies • More clusters => more copies • NP-Hard 1 output [Karuri et al., ICCAD 2007] 4 inputs
Shadow Registers I/O Bandwidth • No limitation on input bandwidth • Does not increase output bandwidth Increases ISA bitwidth 1 output [Cong et al., FPGA 2005]
Overview • Architecture • Custom ISE Logic • I/O Bandwidth • Local memories and coherence • Compilation and Synthesis • Conclusion
Architecturally Visible Storage • DMA transfers data between memory and AVS • Coherence problem between AVS and D$ [Biswas et al., DATE 2006, TCAD 2007]
Overview • Architecture • Custom ISE Logic • I/O Bandwidth • Local memories and coherence • Coherent and Speculative DMA • Virtual Ways • Way Stealing • Compilation and Synthesis • Conclusion
Speculative DMA Coherent DMA loads and evicts the array from AVS during each iteration Speculative DMA waits until the array is overwritten in AVS memory by other data, or if the data is read/written by the D$.
AVS and Cache Ways are Similarif AVS Memory has 1-input, 1-output
Way Stealing No AVS memories (reduced area) No coherence protocol
Coherent AVS Summary • Speculative DMA • Requires a coherence protocol • Lots of bus traffic • Good solution for coherent multiprocessor systems • No limit on AVS memory organization • Uses standard cache IPs • Virtual Ways • Requires non-traditional cache controller • No limit on AVS memory organization • Way Stealing • Requires non-traditional cache • Number of ways limits number of AVS memories • All AVS memories have 1-input, 1-output • Keeps AVS memories within the cache
Overview • Architecture • Compilation and Synthesis • ISE Identification Algorithms • Conclusion
Single Cycle ISE Identification Problem • Legality Constraints: • Convex cut • Contains no forbidden nodes • Number of inputs/outputs match architectural constraints • (e.g., 2 RF inputs, 1 RF output) • Objective: • Find the legal cut that maximizes speedup
Algorithms for ISE Identification • Optimal (Exponential worst-case runtime) • Branch-and-bound search • Integer Linear Program Formulation • Iterative Improvement • Evolutionary algorithms • Simulated annealing • Polynomial-time Heuristics
Branch-and-Bound Search Example [Atasu et al., DAC 2003]
Branch-and-Bound Search Example [Atasu et al., DAC 2003]
ISE Identification Algorithms Journals Conferences [Kastner et al., ICCAD 2001] [Brisk et al., CASES 2002] [Sun et al., ICCAD 2002] [Lee et al., ICCAD 2002] [Atasu et al., DAC 2003] [Goodwin and Petkov, DATE 2003] [Peymandoust et al., ASAP 2003] [Clark et al., MICRO 2003] [Sun et al., ICCAD 2003] [Lee et al., ISLPED 2003] [Cong et al., FPGA 2004] [Biswas et al., DAC 2004] [Yu and Mitra, DAC 2004] [Borin et al., ESTIMedia 2004] [Kastens et al., LCTES 2004] [Yu and Mitra, CASES 2004] [Pozzi and Ienne, CASES 2005] [Biswas et al., DAC 2005] [Atasu et al., CODES-ISSS 2005] [Sun et al., VLSI Design 2005] [Biswas et al., DATE 2006] [Galuzzi et al., CODES-ISSS 2006] [Sun et al., VLSI Design 2006] [Wong et al., HiPEAC 2007] [Verma et al., CASES 2007] [Pothineni et al., CDES 2007] [Pothineni et al., VLSI Design 2007] [Bonzini and Pozzi, DATE 2007] [Atasu et al., DATE 2007] [Noori et al., DATE 2007] [Galuzzi et al., SAMOS 2007] [Galuzzi et al., ARC 2007] [Bonzini and Pozzi, ASAP 2007] [Wolinski and Kuchcinski, ASAP 2007] [Galuzzi et al., ARC 2007] [Yu and Mitra, FPL 2007] [Bennet et al., LCTES 2007] [Verma et al., ASPDAC 2008] [Wolinski and Kuchcinski, DATE 2008] [Galuzzi and Bertels, ARC 2008] [Atasu et al., ASAP 2008] [Galuzzi and Bertels, ReConFig 2008] [Pothineni et al., VLSI Design 2008] [Galuzzi et al., DATE 2009] [Martin et al., ASAP 2009] [Martin et al., SAMOS 2009] [Kamal et al., ASAP 2010] [Pothineni et al., VLSI Design 2010] [Ahn et al., ASPDAC 2011] [Xiao and Casseau, GLS-VLSI 2011] [Xiao and Casseau, ASAP 2011] [Ahn et al., CODES-ISSS 2011] [Atasu et al., IJPP 2003] [Clark et al., IJPP 2003] [Sun et al., TCAD 2004] [Clark et al., TCOMP 2005] [Pozzi et al., TCAD 2006] [Biswas et al., TVLSI 2006] [Sun et al., TCAD 2006] [Sun et al., TVLSI 2006] [Biswas et al., TCAD 2007] [Chen et al., TCAD 2007] [Sun et al., TCAD 2007] [Lee et al., TODAES 2007] [Bonzini and Pozzi, TVLSI 2008] [Zhao et al., IEICE Trans. Fund. 2008] [Atasu et al., TCAD 2008] [Murray et al., TECS 2009] [Verma et al., TCAD 2010] [Galuzzi and Bertels, TRETS 2011]
Overview • Architecture • Compilation and Synthesis • Conclusion • Summary and Future Research Directions
Conclusion • ASIP Architecture • Supply data bandwidth to ASCU • Ensuring coherence when using local memories • ISE Identification • Problem formulation is well-understood • Extensions needed to support memory operations • Many effective algorithms exist
Future ASIP Research Directions • Parallel and Multi-core ASIPs • Balance ISE speedup across many threads • ISE identification for parallel models of computation • Concurrent state machines • Synchronous Data Flow / Kahn Process Networks • MapReduce • Identify ACSU for Current AND Future Applications • Some ISEs are not known at design time • Must insert generality or programmability into the ACSU • Application-specific GPUs • Identify vectorized and threaded ISEs • ACSU by hundreds of near-identical threads concurrently