460 likes | 631 Views
LH e C. John Dainton Cockcroft Institute and Univ Liverpool , Daresbury Science and Innovation Campus, GB and the University of Liverpool, GB. with M Klein ( Univ Liverpool ) P Newman (Univ Birmingham), E Perez (CERN) F Willeke (DESY Hamburg and BNL) and more and more …… !. Why How
E N D
LHeC John Dainton Cockcroft Institute and Univ Liverpool, Daresbury Science and Innovation Campus, GB and the University of Liverpool, GB with M Klein (Univ Liverpool) P Newman (Univ Birmingham), E Perez (CERN) F Willeke (DESY Hamburg and BNL) and more and more …… ! • Why • How • 3. When • 4. Summary hep-ex/0603016, JINST 1 (2006) P10001, and DIS06 Proceedings
Why: Leptons Quarks ? •how are leptons and quarks related ? ICHEP86 Berkeley •put them together at the highest energy at finest detail
TeV eq Kinematic Reach e RL ? space-like >TeV ●2007: HERA -Q2 ≤ 30,000 GeV2 -seq≤ (300 GeV)2 in ~ 0.7 am 3×10-7 ●≥2016?: LHeC -Q2 ≤ 2×106 GeV2 -seq≤(2000 GeV)2 in ~ 0.1 am ! seq>TeV LHeC
Lepton+quark @ TeV ●leptoquark systems – new physics +SM LHC LHeC Re + resonance SM (hadronic) + signal LqLq productionS ~ few × 0.1 fb (Λ=0.1) SM (electroweak) + signal Lq formation ~ 100 fb (Λ=0.1)
Lepton+quark @ TeV ●leptoquark systems – new physics +SM 1 TeV
e * e q _ q e, _ q or q ? q e+ q or q ? e- Lepton+quark @ TeV LHC Lq pairs LHeC Lq formation+decay e+ F=0 e- F=2 fermion number _ _ defined formation (eLR) precision BRs (NC CC) inclusive coherence unique PWA SM + signal + interference qqgLq Lq production mechanism ? disentangle mass spectrum ? spin parity and chirality explsig jets + leptons jet+(lepton)+pT (im)balance
e * e q q e, q Lepton+quark @ TeV LHC Lq LHeC Lq formation+decay e+ F=0 e- F=2 fermion number _ defined formation (eLR) precision BRs (NC CC) inclusive coherence unique PWA SM + signal + interference gqLq l production mechanism ? disentangle mass spectrum ? spin parity and chirality explsig jet + leptons jet+(lepton)+pT (im)balance
Structure of Matter @ TeV Lepton+quark @ TeV ●unique chiral probe @ 0.0001 fm ? e ●70 7000 GeV e±p cm energy 1400 GeV e Manchester ● Cambridge Chadwick SLAC Q2 y nucleus e x nucleon RL protons+neutrons Z W quark ? QCD ● NC+CC+gluon g+EW SM + new Lq physics @ ~ 0.0001 fm ? SM + q structure @ ~ 0.0001 fm ? LHeC ?
Unification ? •precision QCD at highest energy ●short distance structure of SM+ -2006 @ 10-9 -2006 GF@ 10-5 -2006 G@ 0.1% -2006 S @ 1-2% -LHeC + detector S few/mil ● precision discovery probe new chromodynamic physics – beyond SM ?
Heavy Flavour in HadronChromodynamics Lepton+quark @ TeV ●unique chiral probe @ 0.0001 fm ? ●70 7000 GeV e±p cm energy 1400 GeV e e Manchester ● Cambridge Chadwick SLAC Q2 y NC + Z nucleus e nucleon RL b protons+neutrons x Z W quark ? ● NC+CC+gluon g+EW SM + new Lq physics @ ~ 0.0001 fm ? SM @ ~ 0.0001 fm heavy flavour LHeC ?
Heavy Flavour in HadronChromodynamics …… …… underpins discovery ●Higgs at LHC what we know now what we could know X=? what we have to find
"Most of the mass of ordinary matter is concentrated in protons and neutrons. It arises from …[a]… profound, and beautiful, source. Numerical simulation of QCD shows that if we built protons and neutrons in an imaginary world with no Higgs mechanism - purely out of quarks and gluons with zero mass - their masses would not be very different from what they actually are. Their mass arises from pure energy, associated with the dynamics of confinement in QCD, according to the relation m=E/c2. This profound account of the origin of mass is a crown jewel in our Theory of Matter.’’ Frank Wilcek CERN October 11, 2000 Why: Dense Colour? •the origin of mass in the Universe •probe hadronic matter at highest parton density at lowest Bjørken-x
Growing Field Energy Density TeV eq Kinematic Reach ●2007: HERA ●≥2016?: LHeC -Q2 ≥ 1 GeV2 -Q2 ≥ 1GeV2 space-like >TeV -xBj≥ 5×10-5 -xBj≥ 5×10-7 e e Q2 y x 3×10-7 seq>TeV LHeC
Gluon recombination Growing Field Energy Density •Q2 size of gluons ●≥2016?: LHeC -Q2 ≥ 1 GeV2 •xBj phase space for gluons -xBj≥ 5×10-7 e e Q2 y x low x large nuclei
Gluon recombination @ LHeC ●epsaturation Q2 ≤ 5 GeV2 eAsaturation Q2 ≤ 20 GeV2
DGLAP Dense Chromodynamics ●low-xrise of F2 -LHeC: precision eg x > 3×10-3 @ Q2=10000 GeV2 x =βxIP ●low x P physics QCD reggeon calculus ? I
Proton beam ●”standard” LHC protons … with electrons? antiprotons protons protons electrons? protons Np εpN
ep Luminosity ●few 10s GeV electrons (LEP = 70 GeV!) ●RF power = 50 MW = 0.86 LEP = 28% CERN site ●RF power = synchrotron radiation Ie= 74 mA luminosity 74×10-3×1.67×1011×7000/.938 = “perfect” bunch x-ing 4π×1.6×10-19×3.75×10-6× (m2) cm-2 s-1 L = 1.15×1033/ L ~ 1033 cm-2s-1 for reasonable p-beam β ~ 1 m
e±p Luminosity ●astounding ! ●×102LNMCμp @ 0.01 fm ●LeRHICepolppoleA @ 0.007 fm ●×102LHERA epolp @ 0.001 fm ●LLHeCe±p eA @ 0.00014 fm indisputably a next step … is it feasible ?
Lepton Ring ●in LEP tunnel … so like LEP - FODO in eight arcs β-tron phase advance φH=108oφV=90o - bending radius 3133.3 m - (δE/Ebeam)rms = 1.1×10-3 - SR 26 W/cm (Ec=254 KeV) - scRF @ 1GHz resonators @ 12 MV/m 100 m structure = 670 cells sync. phase 31o bucket takes 10× (δE/Ebeam)rms - unlikely e-beam instability single bunch current modest impedance << LEP 8 7 1 6 2 5 3 4 LEP=9 W/cm HERA=13.5 W/cm scRF proven @ > 6 MV/m
ep Collisions ●afterB physics @ LHC e p civil engineering tunnel 2×250m×2m Ø @IP LHeC ep alongsidepp data-taking @ LHC
Interaction Region ●highest lumi - low βe close sc quads - low X-ing angle “hard” bend SR fan sc p-beam « HERA - “crab” RF cavity p-bunch rotation top elevation “crabbed” (rotated) p-bunch V-displaced 3.4 kW 3.2 kW 11.4 kW 3.5 mrad 0.5 mrad ●1o beam access = low-lumi/low-x option (cf HERA)
Operational Luminosity ●beam-beam - “hour-glass” - dynamic β: < HERA - long range beam-beam (parasitic interactions): marginal operational luminosity
LHeC ●tunnel exists (LEP, LHC) ●injection once existed (LEP) ? ●operating p-beam (from 2008) ●operating A-beam (from 2008) ●epeA operating alongside pppAAA ●the TeV ep collider! ●”minimal” mods to LHC! ●LHC upgrade ●cost ?
IR and Experiment ●IR ±many m ●IR ≥9.4o around beam
Asymmetric Collider ●asymmetric beam momenta: LHeC ~ TeV quark quads ? e 70 GeV p 7 TeV electron ●”forward” hemisphere detection to multiTeV topological challenge precision challenge
Timeline ●2007: form working groups + steering committee initial meeting of conveners + committee SAC overview ●2008: workshop I ●2009: workshop II LHeC Design Study [LHCC] ●2011: TDR - construction 8 years - installation e-ring above LHC ~1 year - LHeC part of LHC upgrade - be aware of CLIC progress
Working Group Structure Accelerator (injector, ring) Interaction region Detector The new physics High precision QCD Low x physics eA tbc (SAC)
Joel Feltesse (Saclay/DESY) Guido Altarelli (Roma) Rolf Heuer (DESY) Aharon Levy (Tel Aviv) Lev Lipatov (Petersburg) Allen Caldwell (MPI Muenchen) Young-Kee Kim (Fermilab) Jos Engelen (CERN) Roland Horisberger (PSI) Stephen Myers (CERN) Stan Brodsky (SLAC) Roland Garoby (CERN) Ferdinand Willeke (DESY/BNL) Swapan Chattopadhyay (Cockcroft Institute) Peter Bond (BNL) Richard Milner (MIT) John Dainton (University of Liverpool) LHeC Scientific Advisory Committee
Now ●LHeC 70e 7000p GeV - can be built - has startlingly good luminosity ≥ 1033 cm-2s-1 grows with LHC pp luminosity - adds substantially, uniquely, and with synergy to LHCTeVdiscovery physics - probes chromodynamics @ new density frontier in uniquely comprehensive manner with unchallengable precision synergetically with LHC pppAAA
Lepton + quark @ TeV ●energy for eq discovery extreme chromodynamics ●precision for eq discovery eq understanding extreme chromodynamics ●luminosity for eq discovery LHeC and LHC LHeC and ILC LHeC and LHC
In case you were wondering … ? Sir John Cockcroft … doing accelerator physics ca 1950 … … with 1950 DAQ – pencil and paper! … with 1950 graphics – ammeter! voltmeter!
Lepton-Parton and Parton-Parton ? •ep eX •pp (jet+jet)X probe-parton jet e ? ? RL g q Z W ? ? jet •pp energy scale: 70007000 GeV •LHeC energy scale: 707000 GeV probe+p at LHeC scale xprobe/p = 0.01
LHC probe parton ●probe-parton @ x 0.01 -xq = xU +xD +xU +xD g :q ~ 2:1 ●probe-parton @ x » 0.01 g :q 0 “mixed” LHC probe @ LHeC energy q LHC probe @ LHC top energy
Lepton-Parton and Parton-Parton •pp (jet+jet)X •ep eX probe-parton jet e ? ? RL g q Z W ? ? jet •precise probe e •precise kinematics •smaller kinematic reach but - eqeq “formation” TeV - precision at lower xBj≥10-7 •probeg and q •kinematics ? •larger kinematic reach x larger probe q q/gq/geqeq pair production
Dense Chromodynamics ●relentless low-xrise of F2 -saturation?partons must someday recombine -LHeC: precision eg x > 2×10-4 @ Q2=1000 GeV2 F2 Q2=1000 GeV2 xg/p
Dense Chromodynamics ●relentless low-xrise of F2 -LHeC: precision for x > 2×10-4 @ Q2=1000 GeV2 •precision pdfs - BFKL? CCFM ? • high density -recombination -saturation ? -instantons ? -other “ons” ? -condensates ? -other “ates” ? F2 Q2=1000 GeV2 20 ≤8 gluons/ln x @ HERA xg/p ≥2×10-4@ LHeC 10 10-3 xg/p ≥ 20 g/nucleon/ln x @LHeC … in heavy ion ?
What’s been achieved ●Sokolov-Ternov + spin-rotators @ HERA
What’s been achieved ●Sokolov-Ternov @ LEP70 GeV