200 likes | 528 Views
Correlation and Power Spectra. Application 5. Zero-Mean Gaussian Noise. Power Spectrum. E{P n ( k )} = s 2 = 1.12 = R n (0). Auto-correlation. R n (0) = s 2 = 1.12. >> for j = 1:256, R(j) = sum(n.*circshift(n',j-1)'); end. Window Selection: Hamming. y = filter(Hamming,1,n);.
E N D
Correlation and Power Spectra Application 5
Power Spectrum E{Pn(k)} = s2 = 1.12 = Rn(0)
Auto-correlation Rn(0) = s2 = 1.12 >> for j = 1:256, R(j) = sum(n.*circshift(n',j-1)'); end
Window Selection: Hamming y = filter(Hamming,1,n);
2D Power Spectra and Filtering Application 4
Filtered N_autocov = xcorr2(Noiseimage); figure;imagesc(N_autocov/(128*128));colormap(gray);axis('image') Autocovariance Image Noise Field
Unfiltered figure;imagesc(fftshift(abs(fft2(N_autocov/(128*128)))));colormap(gray);axis('image') Power Spectrum Image Noise Field
Filtered (wc = 0.6; order 20; Hamming Window) N_autocov = xcorr2(Noiseimage_filtered); figure;imagesc(N_autocov/(128*128));colormap(gray);axis('image') Autocovariance Image Noise Field
Filtered (wc = 0.6; order 20; Hamming Window) N_autocov = xcorr2(Noiseimage_filtered); figure;imagesc(N_autocov/(128*128));colormap(gray);axis('image') Power Spectrum Image Noise Field
Filtered (wc = 0.6; order 20; Hamming Window) Rose_filtered = filter2(Z,Roseimage,'same'); Filtered Image Image
Application 5 • Type “sptool” • Load in signal • Import into sptool: startup.spt as a “signal” • Sampling frequency is 1kHz (i.e. Fs = 1000) • View signal • Back to startup.spt, under “spectra” hit create and view. • Analyze spectrum as described in the Application