90 likes | 98 Views
This activity focuses on factoring special cases, including perfect squares and difference of squares. Students will solve problems and write a letter explaining the process to a sick classmate.
E N D
Do Now Multiply. 1) (x2 – 4)(x + 3) 2) (2x – 5y)(x + 2y) 3) (3p – 2q)2 4) (x + 2)(x – 2)(x – 3)
Factoring special cases Objective: Students will be able to demonstrate their understanding of factoring special cases by 1) correctly solving at least 6 of the 10 “you try” problems, 2) scoring at least a 2 on their exit slip, and 3) writing a letter to a sick classmate.
Standard 11.0Students apply basic factoring techniques to second- and simple third-degree polynomials. These techniques include finding a common factor for all terms in a polynomial, recognizing the difference of two squares, and recognizing perfect squares of binomials.
Vocabulary/Rules 1. Perfect square – the product of a number and itself. Ex: 225 is a perfect square because it is the product of 15 × 15. 2. Perfect Square Trinomial – a trinomial which when factored has the form: (a + b)2 = (a + b)(a + b) or (a – b)2 = (a – b)(a – b). • Is the first term a perfect square? • Is the last term a perfect square? • Is the middle term twice the product of the first and last term? 3. Difference of Squares – two perfect squares separated by a subtraction sign. a2 – b2 = (a +b)(a – b)
Example 1 Factor x2 + 10x + 25
Example 2 Factor x2 – 25
Subtracting Polynomials • You try Factor 4x2 - 4x + 1 4x2 – 12x + 36 x2 + 2x + 1 16x2 + 20x + 25 5. 49x2 – 14x + 1 6. 4x2 + 49 7. x2 + 100 8. x2 – 16 9. 121 – x2 10. 25x2 – 100
Subtracting Polynomials • Exit Slip Factor x2 - 9 25x2 + 20x + 4 x2 - 6x + 9 9x2 - 225
Letter to sick classmate Olivia is sick with flu but does not want to fall behind on today’s lecture. Task: Write Olivia a letter and explain how to factor the following problems: 4x2 – 49 and 9x2 - 12x + 4. Provide her with all the information to be successful on her homework. (YOU MAY NOT USE YOUR NOTES OR TALK TO YOUR PARTNER!)