1.24k likes | 1.25k Views
Explore various optimization techniques like Gauss-Newton iteration, Gradient Descent, and Conjugate Gradient in solving geometric problems in computer vision.
E N D
X x1 x2 x3
b Span(A) Ax O
x1 x0 x2 First step minimizes on line. Second step minimizes function in the plane.
Newton Conjugate gradient Gradient descent Model 1
Conjugate gradient Gauss-Newton Gradient descent Model 2 Levenberg Newton
Conjugate gradient Gauss-Newton Gradient descent Model 3 Levenberg Newton
Conjugate gradient Gauss-Newton Gradient descent Model 4 Levenberg Newton
Conjugate gradient Gauss-Newton Gradient descent Model 5 Levenberg Newton
Conjugate gradient Gauss-Newton Gradient descent Model 6 Levenberg Newton