1 / 42

Extremum Properties of Orthogonal Quotients Matrices By Achiya Dax

Extremum Properties of Orthogonal Quotients Matrices By Achiya Dax Hydrological Service, Jerusalem , Israel e-mail: dax20@water.gov.il. The Eckart – Young Theorem ( 1936 ) says that the “ truncated SVD” matrix A k = U k D k V k T solves the least norm problem

gsam
Download Presentation

Extremum Properties of Orthogonal Quotients Matrices By Achiya Dax

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Extremum Properties of Orthogonal Quotients Matrices By Achiya Dax Hydrological Service, Jerusalem , Israel e-mail: dax20@water.gov.il

  2. The Eckart–Young Theorem (1936) says that the “truncated SVD” matrix Ak= UkDkVkT solves the least norm problem minimize F(B)=||A- B||F2 subject to rank(B) £ k ( Also called the Schmidt-Mirsky Theorem. )

  3. Ky Fan’s Maximum Principle (1949) Sa symmetric positive semi-definite n x n matrix Ykthe set of orthogonal n x k matrices l1+…+lk=max{trace(YkTSYk )|YkÎYk} Solution is obtained for the Spectral matrix Vk=[v1 , v2 , … , vk]. giving the sum ofthe largest k eigenvalues.

  4. Outline *TheEckart–Young Theorem and Orthogonal Quotients matrices. * The Orthogonal Quotients Equality. * The Symmetric Quotients Equality and Ky Fan’s extremum principles. *An Extended Extremum Principle.

  5. The Singular Value Decomposition A=USVT S= diag {s1,s2,…,sp} , p = min{m,n} U = [u1 , u2 , … , up] , UTU = I V = [v1 , v2 , … , vp] , VTV = I AV = US ATU = VS Avj=sjuj , ATuj=sjvjj=1, … , p .

  6. Low - Rank Approximations Ak= Uk Dk VkT Dk= diag {s1,s2,…,sk} , Uk= [u1 , u2 , … , uk] , UkT Uk= I Vk= [v1 , v2 , … , vk] , VkT Vk= I

  7. The Eckart–Young Theorem (1936) says that the “truncated SVD” matrix Ak= UkDkVkT solves the least norm problem minimize F(B)=||A- B||F2 subject to rank(B) £ k ( Also called the Schmidt-Mirsky Theorem. )

  8. Rank - k Matrices B= Xk Rk YkT where Rk is a k x k matrix Xk= [x1 , x2 , … , xk] , XkT Xk= I Yk= [y1 , y2 , … , yk] , YkT Yk=I

  9. The Eckart –Young Problem can be rewritten as minimize F(B)=||A- XkRkYkT||F2 subject to XkTXk=I and YkTYk=I .

  10. Theorem 1:Given a pair of orthogonal matrices, Xk and Yk , the related “OrthogonalQuotients Matrix” XkTAYk=( xiTAyj) solves the problem minimize F(Rk)=||A- XkRkYkT||F2

  11. Notation: Xk - denotes the set of all real m x k orthogonal matrices Xk , Xk= [x1 , x2 , … , xk] , XkT Xk= I Yk-denotes the set of all real n x k orthogonal matrices Yk , Yk= [y1 , y2 , … , yk] , YkT Yk=I

  12. Corollary 1 : The Eckart–Young Problem can be rewritten as minimize F(Xk,Yk)=||A- XkRkYkT||F2 subject to XkÎXkand YkÎYk , whereRkis the“OrthogonalQuotientsMatrix” Rk = XkTAYk .

  13. The Orthogonal Quotients Equality For any pair of orthogonal matrices, XkÎXkand YkÎYk , ||A - Xk RkYkT||F2=||A||F2-||Rk||F2 where Rk is the orthogonal quotients matrix Rk = XkTAYk .

  14. Corollary : The Eckart–Young Problem minimize F(Xk,Yk)=||A- XkRkYkT||F2 subject to XkÎXkand YkÎYk. is equivalent to maximize ||XkTAYk||F2 subject to XkÎXkand YkÎYk, and theSVDmatrices Uk andVksolves both problems, giving the optimal value of s12+s22+…+sk2 .

  15. Question:Istherelatedminimumproblem minimize ||(Xk)TAYk||F2 subject to XkÎXkand YkÎYk, solvable ?

  16. Using the Orthogonal Quotients Equality the last problem takes the form maximize F(Xk,Yk)=||A- XkRkYkT||F2 subject to XkÎXkand YkÎYk.

  17. Note that the more general problem maximize F(B)=||A- B||F2 subject to rank(B) £ k is not solvable .

  18. Returning to symmetric matrices How we extend the Orthogonal Quotients Equality tosymmetric matrices?

  19. The Spectral Decomposition S = ( Sij)a symmetric positive semi-definite n x n matrix With eigenvalues l1 ³ l2 ³ ... ³ ln ³ 0 and eigenvectors v1 , v2 , … , vn S vj =ljvj, j = 1, … , n . S V = V D V = [v1 , v2 , … , vn] , VTV = V VT = I D = diag {l1,l2,…,ln} S = V D VT = SljvjvjT

  20. Recall that Rayleigh Quotient Matrices Sk=YkTSYk play important role in Ky Fan’s Extremum Principles .

  21. Ky Fan’s Maximum Principle Sa symmetric positive semi-definite n x n matrix Ykthe set of orthogonal n x k matrices l1+…+lk=max{trace(YkTSYk ) |YkÎYk} Solution is obtained for the Spectral matrix Vk=[v1 , v2 , … , vk]. which is related tothe largest k eigenvalues.

  22. Ky Fan’s Minimum Principle Sa symmetric n x n matrix . Ykthe set of orthogonal n x k matrices . ln-k+1+…+ln=min{trace(YkTSYk)|YkÎYk} Solution is obtained for the Spectral matrix Vk=[vn-k+1 , … , vn] , which is related to the smallest k eigenvalues.

  23. Question : Can we formulate the Symmetric Quotients Equality in terms of trace(Sk)=trace(YkTSYk)=SyjTSyj

  24. The Symmetric Quotients Equality S a symmetric n x n matrix YkÎYk an orthogonal n x k matrix Sk=YkTSYkthe related“Rayleigh quotient matrix” trace(S-YkSkYkT)=trace(S)-trace(Sk)

  25. Corollary 1: Ky Fan’s maximum problem maximize trace(YkSYkT ) subject to YkÎYk, is equivalent to minimize trace(S-YkSkYkT) subject to YkÎYk. The Spectral matrix Vk=[v1,v2, … ,vk] solves both problems, giving the optimal value of l1+…+lk.

  26. Recall that: The Eckart–Young Problem minimize F(Xk,Yk)=||A- XkRkYkT||F2 subject to XkÎXkand YkÎYk. is equivalent to maximize ||XkTAYk||F2 subject to XkÎXkand YkÎYk, and the SVD matrices Uk andVksolves both problems, giving the optimal value of s12+s22+…+sk2 .

  27. Corollary 2: Ky Fan’sminimum problem minimize trace(YkSYkT ) subject to YkÎYk, is equivalent to maximize trace(S-YkTSkYk) subject to YkÎYk. The matrix Vk=[vn-k+1 , … , vn] solves both problems, giving the optimal value of ln-k+1 + … + ln .

  28. ExtendedExremumPrinciples Can we extend these extremums fromeigenvaluesofsymmetricmatrices tosingularvaluesof rectangularmatrices?

  29. Notation: 1£m*£ m , 1£ n*£ n , Xm* - denotes the set of all real mxm* orthogonal matrices Xm* , Xm*= [x1 , x2 , … , xm*] , Xm*T Xm*= I Yn*-denotes the set of all real nxn* orthogonal matrices Yn* , Yn*= [y1 , y2 , … , yn*] , Yn*T Y*=I

  30. Notations : Given Xm*ÎXm*andYn*ÎYm*, the m*xn* matrix (Xm*)TAYn* =( xiTAyj) is called “Orthogonal Quotients Matrix” .

  31. Notations : Thesingular valuesof the Orthogonal Quotients Matrix (Xm*)TAYn* =( xiTAyj) are denoted as h1³h2³…³hk³ 0 , where k = min { m*, n* } .

  32. Questions: Which choice of orthogonal matrices Xm*ÎXm*andYn*ÎYm*, maximizes (or minimizes ) the sum (h1)p+(h2)p+…+ (hk)p wherep >0is a given positive constant.

  33. An Extended Maximum Principle: The SVD matrices Um*= [u1 , u2 , … , um*] and Vn*= [v1 , v2 , … , vn*] solve the problem maximize F(Xm*,Yn*)=(h1)p+(h2)p+…+ (hk)p subject toXm*ÎXm*and Yn*ÎYn*, for any positive power p > 0 , giving the optimal value of(s1)p+(s2)p+…+ (sk)p .

  34. An Extended Maximum Principle That is, for any positive power p > 0 , (s1)p+(s2)p+…+ (sk)p= max{(h1)p+(h2)p+…+ (hk)p | Xm*ÎXm* and Yn*ÎYn*}, and the maximal value is attained for the matrices Um*=[u1,u2, … ,um*] and Vn*=[v1,v2 , … ,vn*] .

  35. The proof is based on “rectangular” versions of CauchyInterlaceTheorem and Poincare Separation Theorem .

  36. Corollary 1:When p=1 the SVD matrices Um*= [u1 , u2 , … , um*] and Vn*= [v1 , v2 , … , vn*] solve the “Rectangular Ky Fan problem” maximize F(Xm*,Yn*)= h1 +h2+…+hk subject toXm*ÎXm*and Yn*ÎYn*, giving the optimal value of s1 +s2+…+sk .

  37. Corollary 2:When p=1 and m*=n*=k the SVD matrices Uk= [u1 , u2 , … , uk] and Vk= [v1 , v2 , … , vk] solve the maximum trace problem maximize F(Xk,Yk)= trace ( (Xk)TAYk) subject toXkÎXkand YkÎYk, giving the optimal value of s1 +s2+…+sk . * See also Horn & Johnson, “Topics in Matrix Analysis”, p. 195.

  38. Corollary 3:When p=2 the SVD matrices Um*= [u1 , u2 , … , um*] and Vn*= [v1 , v2 , … , vn*] solve the “rectangularEckart–Youngproblem” maximize F(Xm*,Yn*)= ||(Xm*)TAYn*||F2 subject toXm*ÎXm*and Yn*ÎYn*, giving the optimal value of (s1)2+(s2)2+…+ (sk)2 .

  39. AnExtendedMinimumPrinciple Question:Can we prove a similar minimumprinciple ? Answer: Yes,butthe solutionmatrices aremorecomplicated.

  40. An Extended Minimum Principle: Here we consider the problem minimizeF(Xm*,Yn*)=(h1)p+(h2)p+…+ (hk)p subject toXm* ÎXm* and Yn* ÎYn*, for any positive power p>0 . The solution matrices are obtained by deleting some columns from the SVD matrices U = [u1 , u2 , … , um] and V = [v1 , v2 , … , vn] .

  41. Summary *TheEckart–Young Theorem and Orthogonal Quotients matrices. * The Orthogonal Quotients Equality. * The Symmetric Quotients Equality and Ky Fan’s extremum principles. *An Extended Extremum Principle.

  42. The END Thank You

More Related