740 likes | 746 Views
Understand Thompson’s and Rutherford’s experiments, light diffraction, Bohr's model for hydrogen atoms, atomic line spectra, and quantum mechanics in this detailed exploration.
E N D
Diffraction:- the change in direction of a wave as • it passes the edge of an object
The Wave Nature of Light Light as electromagnetic waves: polarization, interference, diffraction, reflection, and refraction
Atomic Line Spectra (Line Emission Spectra) Hydrogen has the simplest atomic emission spectrum ( 1880s).
The Spectrum of Atomic Hydrogen Compare the absorption spectrum to the emission spectrum of H If we pass light from a continuous source (eg from a hot object) through a substance, then the continuous spectrum has some of the wavelengths removed! -- absorption spectrum
Hidrojen İçin Bohr Atom Modeli (1913) Elektronlar belirli yörüngelerde bulunabilirler
Bohr Model of Hydrogen Atoms Assumptions Quantized energy levels – total energy for each level is the sum of the kinetic energy of the electron plus its potential energy. Electrons do not radiate while in their orbits, but do when they move from one orbit to another.
E = 0 eV Paschen Series (IR) n = 3 Balmer Series (visible) n = 2 Energy Lyman Series (ultraviolet) E1 = -13.6 eV n = 1 Lyman Balmer Paschen Example Data
Line Spectra The Lyman and Balmer series of lines in the hydrogen spectrum correspond to transitions that the electrons make between higher and lower energy levels. The Bohr model only has one quantum number, n, which represents the energy level. http://www.walter-fendt.de/ph11e/bohrh.htm
Elektronlar gerçekten de çekirdek etrafında belirli yörüngelerde mi dönerler? • Bunu tespit etmek mümkün mü?
Elektronun konumu ve momentumunun ölçülmesi • Işının her çarpışında elektronun da konumu değişir. Bu sebeple ışıkla bir elektronunun konumu ve hızı hassas bir şekilde belirlenemez.
Heisenberg, Werner1901–76, Alman Fizikçi1932 Nobel Fizik Ödülü Eğer bir taneciğin nerede olduğunu kesin olarak biliyorsak, aynı anda taneciğin nereden geldiğini ve nereye gittiğini kesin şekilde bilemeyiz.
Erwin Schrödinger 1927 yılında • Elektronlar, zamanlarının büyük bir çoğunluğunu orbital denen bölgelerde geçirirler. • Değişik şekillerde orbitaller mevcuttur.
Atomik Orbitaller ŞekliOrbital sayısı e sayısı s küresel 1 2 p halter 3 6 d karışık 5 10 f karışık 7 14 Herbir orbital 2 elektron içerir
The First Shell • The innermost shell (1) only contains an s orbital. 1s
p Orbitals • Rather than being a sphere, the "p" orbital has two lobes pointed in opposite direction away from the nucleus. • One p orbital points along each the x, y, and z axis. • There are three p orbtitals in every shell except the first.
The Second Shell • The second shell contains an s type orbital as well as a new kind of orbital called a "p" orbital. 2py 2px 2pz 2s
d Orbitals • There are 5 types of d orbitals. Four of the five have four lobes at 90o to one another. The fifth looks like a donut around a p-orbital Image from: HMChem
The Third Shell • The 3rd shell has: • 1 s orbital (3s) • 3 p orbitals (3px, 3py, 3pz) • 5d orbitals(3dxy, 3dyz, 3dxz, 3dx2-y2, 3dz2)
f orbitals • f-orbitals have 6 lobes and are very challenging to envision Image from: HMChem
The First Two Shells Picture from and more info on How Atoms Work
The Fouth Shell • The 4th shell has: • 1 s orbital (4s) • 3 p orbitals (4px, 4py, 4pz) • 5d orbitals(4dxy, 4dyz, 4dxz, 4dx2-y2, 4dz2) • 7 f orbitals
Principle quantum number • n = 1, 2, 3,….. describes orbital size and energy • Angular momentum quantum number • l = 0 to n-1 describes orbital shape • Magnetic quantum number • ml = l, l-1…-l describes orientation in space • of the orbital relative to the other • orbitals in the atom • Spin quantum number • ms = +1/2 or -1/2 describes the direction of spin • of the e- on its axis • Pauli Exclusion Principle: "no two electrons in an • atom can have the same set of quantum numbers", • or, only two electrons (of opposite spin) per orbital.
Write a valid set of quantum numbers for each of the following sub-shells: (a) 2 s n = 2, l = 0, ml = 0, ms = - 1/2 n = 2, l = 0, ml = 0, ms = ± 1/2 2 combinations
Write a valid set of quantum numbers for each of the following sub-shells: (a) 2 s n = 2, l = 0, ml = 0, ms = - 1/2 n = 2, l = 0, ml = 0, ms = ± 1/2 2 combinations (b) 2 p n = 2, l = 1, ml = -1, ms = - 1/2 n = 2, l = 1, ml = -1, 0 or 1, ms = ± 1/2 6 combinations
Write a valid set of quantum numbers for each of the following sub-shells: (a) 2 s n = 2, l = 0, ml = 0, ms = - 1/2 n = 2, l = 0, ml = 0, ms = ± 1/2 2 combinations (b) 2 p n = 2, l = 1, ml = -1, ms = - 1/2 n = 2, l = 1, ml = -1, 0 or 1, ms = ± 1/2 6 combinations (c) 3 d n = 3, l = 2, ml = -2, ms = - 1/2 n = 3, l = 2, ml = -2, -1, 0, 1, or 2, ms = ± 1/2 10 combinations
How many orbitals in a subshell? l = 0, 1s 1 l = 1, px, py, pz 3 l = 2, dxy,,dxz,,dyz ,, dx2-y2,dz2 5
How many orbitals in a subshell? l = 0, 1s 1 l = 1, px, py, pz 3 l = 2, dxy,,dxz,,dyz ,, dx2-y2,dz2 5 2 l + 1 orbitals per subshell
How many orbitals in a subshell? l = 0, 1s 1 l = 1, px, py, pz 3 l = 2, dxy,,dxz,,dyz ,, dx2-y2,dz2 5 2 l + 1 orbitals per subshell How many orbitals in a shell? n = 1, 1s 1 n = 2, 2s, 2px, 2py, 2pz 4 n = 3, 3s, 3px, 3py, 3pz, 3dxy,,3dxz,,3dyz ,, 3dx2-y2,3dz2 9