E N D
A formal method of finding a gradient function. y average gradient… f(x+h)-f(x) h x x+h x
y f(x+h)-f(x) h x x+h x
y f(x+h)-f(x) h x x x+h
y f(x+h)-f(x) h x x x+h
y f(x+h)-f(x) h x x x+h
y f(x+h)-f(x) h x x x+h
y f(x+h)-f(x) h x x x+h
y f(x+h)-f(x) h x x x+h
y x x x+h
y x x x+h
y instantaneous gradient at x x x:x+h
As h→0, the average gradient approaches the actual gradient at x Gradient at x As This leads to the formal definition of the derivative
Definition: The function f‘(x) defined by: is called the derivative of f with respect to x – or the gradient function of f(x). Using the definition to find the gradient function (or derivative) of f, is sometimes referred to as “…finding the gradient/derivative using First Principles” Let’s use it to find some other gradient functions….