230 likes | 457 Views
Learning to Rank. From Pairwise Approach to Listwise Approach. Agenda. Introduction Ranking Problem Ranking Pairwise Ranking (Brief) Listwise Ranking Probability Models Permutation Probability Top one Probability Results. Introduction. Construct model or method that learns to rank
E N D
Learning to Rank From Pairwise Approach to Listwise Approach
Agenda • Introduction • Ranking Problem • Ranking • Pairwise Ranking (Brief) • Listwise Ranking • Probability Models • Permutation Probability • Top one Probability • Results
Introduction • Construct model or method that learns to rank • Area of use: • Anti Spam • Product Rating • Expert Finding • ...
d_1^i d_2^i d_3^i . . d_n^i Introduction • Ranking Problem – Document retrieval Documents: {d_1, d_2, ... d_n} Ranking of documents Ranking System Query: q
Query Q D = {d , d , ...., d } 1 2 n Instance : (d , d ) 1 2 Pairwise Ranking • Classification of objects Relevance label Classification Model
Pairwise Ranking • Support Vector Machine • Ranking SVM • Boosting • RankBoost • Neural Network • RankNet
m (i) (i) L (y , z ) i=1 Listwise Ranking • Training (1) (m) Q = {q , ...., q } Queries d = {d , ...., d } Documents y = {y , ...., y } Judgements x = {x , ...., x } Features f (x ) Score Func. z = {f(x ) , ...., f(x )} Scores (i) (i) (i) (i) n 1 (i) (i) (i) (i) m (i) (i) 1 n T = {(x , y )} (i) i=1 (i) (i) (i) 1 n (i) j Listwise loss function (i) (i) (i) (i) n 1
Listwise Ranking • Ranking • New Query : q • Associated Docs. : d • Feature vectors : x • Trained rank. Func. : f (x ) • Rank documents in descending order ( i’ ) ( i’ ) ( i’ ) ( i’ ) j’
Probability of pi given s o(S ) o(S ) n Pi(j) Pi(k) P (pi) = s n j=1 k=j Permutation Probability • f : s probability distribution pi = <pi(1), pi(2), ...., pi(n)> s = (s , s , .... s ) 1 2 n
Top one prob. of j P (j) = P (p). s s P(1)=j,p n Top one Probability • Probability of being ranked on top of list
f = f x = f (x ) z (f ) = {f (x ), ..., f (x )} w (i) (i) w j j (i) (i) (i) w w 1 1 ListNet • Optimizing loss function • Neural Network as model • Gradient Descent as optimization alg. w = neural network
Results • TREC • Web pages from .gov domain • OSHUMED • Documents and queries on medicine • CSearch • Data from commerciel search engine
Results • NDCG – Normalized Discounted Cumulative Gain • Relevance judgements > 2 • Korrekt – Delvist korrekt - Ukorrekt • MAP – Mean Average Precision • Relevance judgements = 2 • Korrekt - Ukorrekt
Results • NDCG on TREC
Results • NDCG on OSHUMED