440 likes | 571 Views
g - ray astrophysics : news from the astronomical frontier. J. Cortina (IFAE Barcelona). Electromagnetic spectrum : astronomical windows. Traditional astronomy was restricted to the “ optical astronomical window ” which is accessible to the naked eye : ~400-700 nm .
E N D
g-rayastrophysics: newsfromtheastronomicalfrontier J. Cortina (IFAE Barcelona)
Electromagneticspectrum: astronomicalwindows Traditionalastronomywasrestrictedtothe “opticalastronomicalwindow” whichisaccessibletothenakedeye: ~400-700 nm. J. Cortina, Gamma ray astronomy
Electromagneticspectrum: astronomicalwindows • Starsrange in temperaturefrom ~3000 K to ~40000 K, so theirblack body emissionspansfrom UV to IR. • Conventionalastronomicalwisdomendof 19th century: theskyisdarkbeyondthesewavelengths. J. Cortina, Gamma ray astronomy
Electromagneticspectrum: astronomicalwindows • Radio astronomy: startedactually by engineerspartlybecauseastronomersexpectednothingandpartlybecauseastronomersdidn’t know how todetect radio waves. • Theskyis full of radio sourcesandthey are notmainsequencestars. • In somegalaxies, radio emissiononly comes fromtheverycoreofthegalaxy: supermassiveblackholespowered by accretionandnot by stellarfusion • Cosmicmicrowave background. J. Cortina, Gamma ray astronomy
Electromagneticspectrum: astronomicalwindows • X-rayastronomy: onlypossiblewhendetectorscouldflyonrocketsorsatellites: • Theskyis full of X-raysourcesandthey are notmainsequencestars • Brighestsources are X-raybinaries: systems made of a starand a compact object (pulsar orblackhole), powered by accretion. J. Cortina, Gamma ray astronomy
Electromagneticspectrum: astronomicalwindows Thelastastronomicalwindowto open istheg-raywindow: everythingbeyond 511 keV. Theatmosphereis opaque tog-rays. Let’ssee how we can detectthemand how thesky looks like in thiswindow. J. Cortina, Gamma ray astronomy
Detectiontechniques J. Cortina, Gamma ray astronomy
Space-baseddetectors g-raysinmediatelyinteractwhentheyentertheEarth’satmosphere g e- e+ • Theobvioussolutionistogetthe detector out oftheatmosphere, onboardofballoons, rocketsorsatellites. • Severalsuchdetectorshaveoperatedsincethe 1970’s: SAS-2, COS-B and EGRET. EGRET catalogued ~350 g-raysources. • Currently: ItalianAgile detector and Fermi/LAT J. Cortina, Gamma ray astronomy
Fermi satellite • Fermi Gamma-raySpaceTelescope • Launchedon 11 June 2008. • Joint ventureof NASA, the US DepartmentofEnergy, andfunding agencies in France, Germany, Italy, Japan, andSweden. • Twoscientificinstruments: • TheLargeAreaTelescope (LAT): 30 MeV - 300 GeV • Gamma-rayBurst Monitor (GBM). 8 keVto30MeV. Detects gamma-rayburstsacrossthewholeoftheskynotoccultedby the Earth. J. Cortina, Gamma ray astronomy
Fermi/LAT LAT detects-rays in the 30 MeV - 300 GeVrange. • Tracker: converts-rayinto e-/e+andmeasurestheirtrajectoriesto determine the-rayincidentdirection. • Calorimeter: measuresenergyofelectron & positron. • Veto: external shieldtoeliminatechargedparticle background. J. Cortina, Gamma ray astronomy
Fermi/LAT tracker • High Z tungstenlayerstoconvert-rayinto e+e-pair. • Four-by-four array oftower modules. • In each module, there are 19 pairsof planes of Si - in eachpair, oneplane has thestripsoriented in the "x-direction", whiletheother has thestripsoriented in the perpendicular "y-direction". J. Cortina, Gamma ray astronomy
Fermi/LAT calorimeter • CsI(Tl) scintillator: highlightyield, coupledwithphotodiodestomeasureenergyofthepair. • Bars, arranged in a segmentedmanner, giveboth longitudinal andtransverseinformationabouttheenergydepositionpattern. J. Cortina, Gamma ray astronomy
Fermi/LAT: performance 60° off-axis Angular resolution on-axis Linesrepresent 3 differentcutstoremove background Effectivearea J. Cortina, Gamma ray astronomy
1-yearsensitivitytog-rays Galacticplane Near plane Highlatitude J. Cortina, Gamma ray astronomy
Fieldofviewandoperation • Fermi/LAT operates in “surveymode”: itimagesthewholeg-rayskyessentiallyevery 1.5 hours. • Data are processedautomaticallyand made freelyavailabletogetherwiththenecessarytoolstoanalyzethem. (1.5h) J. Cortina, Gamma ray astronomy
Limitationsofspace-basedtelescopes Space-baseddetectorssufferfromtwolimitationswhichpreventthemtocovertheenergyrangeabove~100 GeV: • Areacannotexceed ~1 m2whilethestrongestflareeverreportedabove 200 GeVfeatured1 photon / m2 in 8 h. • At such energies, the detection volume is too small to contain the shower developed by the g-ray. ~1 m2 Calorimeter depth 10 X0 J. Cortina, Gamma ray astronomy
primary -ray Ground-based -ray astronomy • Observe particle showers induced in the atmosphere (28 X0 at s.l.) by -rays • Most successful technique: Imaging Atmospheric Cherenkov Telescopes Very High Energy = E > 30 GeV J. Cortina, Gamma ray astronomy
Gamma- ray Particle shower ~ 10 km ~ 1o Cherenkov light ~ 120 m How to detectg-ray showers: with IACTs J. Cortina, Gamma ray astronomy
ArraysofIACTs • Intersection point of major axes allows simple and more precise source position reconstruction, i.e. better discrimination and angular resolution. • More images means better estimation of shower shape, i.e. better discrimination from cosmic ray background. J. Cortina, Gamma ray astronomy Slide from W. Hofmann
TwogenerationsofIACTs • Pioneer IACT: Whipple 10m telescope in Arizona since 1969. • First array ofIACTs: HEGRA in La Palma, Spain (Germangroups + UCM). • Last 10 years: 2nd IACT generationwithlowerenergythresholdsandbetter flux sensitivities: HESS • Array of 4 x 12 meter (100 m2 mirror) IACTs • Mainly German-French collaboration • LocatedinNamibia (Southern Hemisphere) • Fully operational since 2003. V ERITAS - 4x 12m telescopes in operation in Arizona since 2007. - Mainly US-UK coll. J. Cortina, Gamma ray astronomy
MAGIC telescopes • CollaborationofSpain, Germany, Italy… Located in La Palma, Spain. • Spanishgroups: IAA, IAC, IFAE, ICE, UAB, UB, UCM • Single telescope (MAGIC-I): largest IACT yetconstructed (17mØ), i.e. lowestenergythreshold. • Fastestsampling (2GSps), ultralight CF frameandmirrors, fastrepositioning (<20 secs/180º), active mirror control… • MAGICtelescope array: stereoobservationsdownto 50 GeVregularlysinceFall2009. • M-II isanimprovedcopyof M-I. J. Cortina, Gamma rayastronomy
Performance of MAGIC • Energythresholdis 50 GeV, thelowestamongIACTsandoverlappingwith Fermi/LAT. Flux sensitivity= 0.76% crab >300 GeV • Angular resolution: 0.1º at 100 GeV, down to 0.04º at >1 TeV. • Energy resolution: 20% at 100 GeV, down to 15% around 1 TeV. J. Cortina, Gamma rayastronomy
Physics in theg-rayastronomicalwindow J. Cortina, Gamma ray astronomy
Galacticcosmicrays • Maybetooshamefultomention: cosmicrayswerediscovered100 years ago (1912), butwedon’t know wherethey come from. • Theyrepresent a significantfractionoftheenergycontentofourgalaxy. J. Cortina, Gamma ray astronomy
CR/g-ray connection • Galacticcosmicrays (CR) are believedtooriginate in Supernova Remnants (SNR). • E < 1015eV • Accelerated in the sh0ck between SN ejectaandinterestellarmedium. • Eventuallytheydiffuseawayfromthe SNR andfill up thegalaxy. Cosmicraysgenerateg-raysviap0whentheyinteractwithnucleioftheinterestellarmedium. Sincethedensityof CR ishigher in thenearbyof SNR, oneexpects SNR to “shine” in g-rays.
CR/g-ray connection Detecting 10’sto 100’sof SNR wasoneofthephysicsdriversofthe firstgenerationofIACTs (e.g. HEGRA). Howevertheydiscovered no g-ray bright SNR. ThesecondgenerationofIACTshavemanagedtodiscover a few.
g-raysfrom SNR RXJ1713 (HESS): spatialdistributionofTeVspectralindices • Wehavenotonlydetectedthem, butwe can even resolvetheirmorphology. • We can studyspatialcorrelationswithotherwavelengths, and test dependenceonmagneticfieldintensityandmassdensity. • However: • g-rays may alsooriginatethroughInverse-Compton emissionofelectrons/positronsaccelerated in the SNR. • We do nothavespectra up totheKnee (>100 TeV) toprovethatthey can generatethe CR spectrum. RXJ1713:hadronic vs leptonic J. Cortina, Gamma rayastronomy
g-raysfrom SNR Thesituation may improvefor SNR whichseemsto be interactingwithnearby molecular clouds. • Thecloudincreasesthemassdensityandcorrespondinglytheg-rayemissitivity. • Ifg-raysonly come fromthecloud, theymustcome fromprotons, He… andnotfromelectrons. MAGIC: W51 MAGIC: IC-443 Molecular clouds J. Cortina, Gamma rayastronomy
Extragalactic cosmic rays • Above ~1015eVCR are ofextragalacticorigin. Pierre Auger E>1017eV. • Unfortunatelythereis no clearcorrelationwithanysourceorsourcepopulation. • Can g-raytelescopeshelptoestablishtheirorigin? As with SNR, g-rays are always a by-productof CR interactionwithinterstellarorintergalacticmatter. • Unfortunately: VHE<~1014eVverydifferentenergyranges!! PIERRE AUGER (E~1019eV) AGN
Extragalactic cosmic rays Nearby normal galaxies e.gAndromeda=M31: rCR(M31) ~ rCR(MilkyWay) Notluminousenough in CRs. Starburstgalaxies e.g. M82 or NGC253 Extreme starformation: rCR(M82) ~ 500 xrCR(MilkyWay) Radiogalaxies e.g. Cen A or M87 Active galaxies: CR production in jet developingfrom central Supermassive Black Hole Clusters ofgalaxies e.g. Virgo orPerseus Accumulatedemissionofallgalaxiesoracceleration in largescale shocks.
Fermi/LAT: local galaxies • Fermi/LAT has alreadydetectedemissionfromnearby normal galaxiesandstarbursts. • g-rayluminositydoesnotcorrelatewith total massbutwithstarformationrate (SFR). • SFR probablycorrelatedwithrateof SN explosionsand CR density.
Radiogalaxies Flare at VHE • IACTshavediscoveredfourradiogalaxies at VHE: Cen-A, M87, NGC 1275 and IC 310. • Emission comes fromthe jet andisstrongly variable: unclearifenergy in jet istransported by hadronsand CR may produce theg-rays. MAGIC+VERITAS+HESS: Science325 (2009) 444 MAGIC Brightening of radio core J. Cortina, Gamma ray astronomy
Unidentified Fermi Objects (UFOs) • Abouthalfofthesources in the EGRET catalogue wereunidentified. • Even afterimprovement in sensitivityand angular resolution, about 1/3 ofthesources in the Fermi/LAT catalogue remainwithout a counterpart. • Meaning: thereisplentyofroomforsurprises:newsourcesclasses, even darkmatter…. J. Cortina, Gamma ray astronomy
HESS galacticsurvey • HESS has made the 1st complete scanofthegalacticplane at VHE. • About 60 newsources. • Emissiondominated by pulsar windnebulae (PWN). • 1/3 ofthesourcesstillunidentified. HESS, ICRC2011 J. Cortina, Gamma ray astronomy
Surprise: pulsarsand PWN alloverthe place Thelargestpopulationofsources in the HESS survey are Pulsar WindNebula. So what’s a PWN? 3 1 2 CrabNebula Optical+X-rayimages X-ray: Chandra Artist’sview J. Cortina, Gamma ray astronomy
Surprise: pulsarsand PWN alloverthe place • Pulsars are rotating (P~1-1000 ms) neutronstarswithmagneticfields ~108T. • Allphenomena in pulsars are powered by spindownofrotation. • Electric fieldgenerated by star’srotation can accelerateparticles up to 1012eV. • Pulsar alsogenerates a steadywindofparticles+magneticfieldwhichcarriesawaymostofpulsar’spowerLcrab~1031W (Sun’s L=1026 W). • Fermi/LAT has detectedhundredsofpulsars up to ~10 GeV. • MAGIC and VERITAS havedetectedpulsed VHE emission >400 GeV, in contradictiontoallexistingmodels. g-rays may originatefrommagnetosphereorparticlewind. Magnetosphere: size ~1000 km Neutronstar: size ~10 km J. Cortina, Gamma ray astronomy
Surprise: pulsarsand PWN alloverthe place • Theparticlewindexpandsintothesurrounding dense medium. • Eventuallyitgenerates a shock. • Particlesgetisotropizedand are re-acceleratedtoenergies up to ~100 TeV, with a powerlawenergydistribution. • As manyelectrons as positrons: may explainresultsof PAMELA. e- e+ NEBULA WIND ~0.1 pc SHOCK J. Cortina, Gamma ray astronomy
PWN at g-rays synchr • Theemergingparticles produce electromagneticradiation at allwavelengths as theyexpandintotheinterstellarmedium: PWN. • Electronsgeneratesynchrotronemission up to~1 MeVenergiesandInverse Compton emission up to ~100 TeV (VHE). • More mysterious: Agileand Fermi havereportedGeVflareslasting a fewdays in Crab. Fermi+MAGIC IC HESS J. Cortina, Gamma ray astronomy
Totallyunexpected: hugestructure in ourgalaxy Su, Slatyer & Finkbeiner, usingpublic Fermi data: twolarge gamma-raybubbles, extending 50 degreesaboveandbelowtheGalacticcenter, with a widthofabout 40 degrees in longitude. J. Cortina, Gamma ray astronomy
Fermi bubbles Su, Slatyer & Finkbeiner, usingpublic Fermi data: twolarge gamma-raybubbles, extending 50 degreesaboveandbelowtheGalacticcenter, with a widthofabout 40 degrees in longitude. J. Cortina, Gamma ray astronomy
Totallyunexpected: hugestructure in ourgalaxy • g-rayemissionassociatedwiththesebubbles has a significantlyharderspectrum (dN/dE ∼ E−2) than IC emissionfromgalacticelectrons, org-raysproduced by decayofpionsfrom CR-ISM collisions, • Bubbles are spatiallycorrelatedwiththehard-spectrummicrowaveexcessknown as the “WMAP haze”. Edges are correlatedwith X-rayemissiondetected by ROSAT. • May havebeencreated by somelargeepisodeofenergyinjection in theGalacticcenter, such as pastaccretioneventsontothe central massiveblackhole, or a nuclear starburst in thelast∼ 10 Myr. • Otheralternatives: in situ acceleration in shocks at theedgeofthebubble, steadywindofparticlesfromgalacticcenter… J. Cortina, Gamma ray astronomy
Wrap up • g-rays are thelastwindowtotheuniverse so far: space- andground-baseddetectorshaveconsolidatedthefieldduringthelast 10 years. • Space-baseddetectorslikeAgileand Fermi/LAT: highefficiencytoremove background andreconstructg-rayparameters, butlimitedarea. Ground-basedIACTsreplacethemabove 30 GeV. • Wealthofdiscoveries. Justfewexamples: • Studyofcosmicraysthroughdetectionofg-rays in ourgalaxyandbeyond. • Unexpectedobjects: proliferationof pulsar nebulae, Fermi bubbles. J. Cortina, Gamma ray astronomy