1 / 40

Particle Physics with Neutrons

Particle Physics with Neutrons. Hartmut Abele Fundamental Interactions June 22, 2004. Fundamental Interactions. The Standard Model Two parameters: Lambda = g A /g V V ud , CKM matrix Gravity and Quantum Mechanics Observables: The lifetime

gurit
Download Presentation

Particle Physics with Neutrons

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Particle Physics with Neutrons Hartmut Abele Fundamental Interactions June 22, 2004

  2. Fundamental Interactions • The Standard Model • Two parameters: • Lambda = gA/gV • Vud, CKM matrix • Gravity and Quantum Mechanics • Observables: • The lifetime • Spin of neutron and decay particles Half a dozen observables • Momenta of decay particles }

  3. Outline • Correlation measurements in beta-decay • beta asymmetry A = 0.1170(13) • neutrino-asymmetry B = 0.983(4) • electron-neutrino angular correlation a = 0.102(5) • triple correlation coefficient D = (0.6 ± 1.0)·10-3 • triple correlation coefficient R: • Axial to vector coupling (correlation A) • gA /gV = 1.2720(18) • Quark mixing and CKM Unitarity (A, lifetime) • Vud = 0.9725(13) • unitarity of CKM-matrix: Vud2 + Vus2 + Vub2 = 1(6.0 ± 2.8)·10-3 • Neutrinos, left/right (A,B correlation) • mass of right-handed boson m(WR) > 281 GeV/c2 (90% c.l.) • left-right mixing angle 0.20 <  < 0.07 (90% c.l.) • New sources of CP violation, (D, R correlation, EDM, this conference) • phase between gA and gV  = (180.08 ± 0.10)0 • Speculation about CPT, (D, R correlation, EDM, this conference)

  4. PROCESSES WITH SAME FEYNMAN DIAGRAM: • Solar cycle p p  D e+ e p p e  D e … • Neutron star formation p e  n e • Primordial element formation n e+  p e'p e  n e n p e e' • Neutrino detectors p e'  n e+ • Neutrino forward-scattering e p e+ n etc. • W, Z-production p p'  W  e e' etc. D.Dubbers

  5. Outline II • Baryon number violation • neutron-antineutron oscillation timen nbar> 0.86·108 s (90% c.l.) • Early Universe • number of neutrino families N= 2.6 ± 0.3 • baryonic matter in universe/crit = (4 ± 1) % • Search for extra dimensions in space time • Gravitational bound quantum states • String theories

  6. Processes that violate baryon number Do neutrons oscillate? n  nbar Baryon-number oscillations B   B? Process allowed in some Grand-Unified Theories • Observable: Antineutron Experimental limit: n nbar > 0.86·108 s (90% c.l.) Limit on neutron oscillations probes 105 GeV range D.Dubbers

  7. A Neutron Spin Electron B Neutrino C Proton Correlation measurements in -decay Observables in neutron decay: Lifetime  Spin Momenta of decay particles

  8. Transition probability Triple correlation bn correlation triple correlation b asymmetry n asymmetry SM: 0 11% -11% 97% SM: 0

  9. Particles And Fields matrix for d-u transition: hadron and lepton currents: vector- and axial vector currents: Lagrange function for neutron decay:

  10. Neutron Spin A A Neutron Spin Electron Electron Coefficient A W(J)={1+v/cPAcos(J)} CoefficientAand lifetime t determineVudandl = gA/gV No coincidences !

  11. Spectrometer Magnetic field Polarizer Spin flipper Cross section neutron beam

  12. A fit • final result: • A = -0.1189(7) • l = -1.2739(19) PRL 88 211801 (2002) Aexp = A v/c Pf Vud=0.9717(13) (4:)(12:A)(4:theory) Dissertation: J. Reich

  13. u e u u u d u d d W Vud d Quark Mixing and CKM Unitarity • Standard Model: • quark-mixing should be 'zero-sum game': • quark mixing = pure rotation in flavor space • i.e. CKM quark mixing matrix should be unitary • Vud from • Nuclear beta decay Vud=0.9740(5), 2.3 sigma • Pi beta decay Vud=0.9717(56) • Neutron beta decay, 2.7 sigma • High energy physics assuming unitarity CKM Matrix

  14. Free Parameters, Standard Model Ft-values Neutron Deviation from unitarity Visible in the “raw” data! hep-ph/0312124 hep-ph/0312150 Vud=0.9717(13) (4:)(12:A)(4:theory)

  15. Conclusion 2002 • Nuclear beta-decay dominated by theoretical errors = 0.0032  0.0014 • Restoration of unitarity: 2.3 sigma shift • Neutron beta decay dominated by experimental errors = 0.0076  0.0028 • Restoration of unitarity: would require a 3 sigma shift in A • a 8 sigma shift in lifetime • radiative corrections are 8 sigma wrong • K decays: 3 sigma shift to explain nuclear beta decay, or 8 sigma shift to explain neutron results

  16. Free Parameters, Standard Model, 2004 Ft-values Neutron Deviation from unitarity Visible in the “raw” data! hep-ph/0312124 hep-ph/0312150 Vud=0.9717(13) (4:)(12:A)(4:theory)

  17. Neutron lifetime t NIST: Mampe et al., PRL 63 593 (1989) Huffmann et al., Nature Munich: ri = 10 cm Ra = 30 cm h = 60 cm

  18. We want • More neutrons • No corrections to raw data • 100% polarization • No background The new A measurement • A new beam • The ‘ballistic’ super-mirror cold-neutron guide H113 • H. Haese et al., Nucl. Instr. Meth. A485, 453 (2002) • New Polarizers • New Geometry for Beam polarization • T. Soldner: A perfectly polarized neutron beam • New analyzer with He cells

  19. Polarization efficiency

  20. Neutron Spin Proton Electron Neutrino Neutron Spin Electron Neutrino Proton Coefficient B Two Techinques Our method: Electron proton coincidence

  21. Proton detector Proton C foil Scintillator • Proton detection: • Measure electron energy • Wait for proton • Convert proton into • electron signal

  22. Proton “electron” spectrum Dissertation: J. Reich

  23. Neutron Spin Proton Electron Neutrino Neutron Spin Electron Neutrino Proton Same hemisphere

  24. B Detector 1 Detector 2 Correction [%] Error [%] Correction [%] Error [%] Polarization & Flip Efficiency (1.5) 0.5 (1.8) 0.5 Statistics 0.8 0.8 Accidental coincidences (3.0) 0.5 (3.5) 0.6 Additional Stop pulses -0.8 0.4 -0.9 0.5 Gain 0.01 0.01 Offset 0.03 0.05 Edge effect (-0.1) 0.05 (-0.1) 0.05 Electro magnetic mirror (0.5) 0.05 (0.5) 0.05 Grid effect (-0.05) 0.05 (-0.05) 0.05 Backscattering Coefficient A 0.03 0.03 Coefficient a 0.06 0.06 Sum -0.8 1.15 -0.9 1.4 Results: B = 0.967±0.012 and C=-0.238 ±0.011Dissertation Kreuz 2004 BPDG = 0.983±0.004 and Ctheory=-0.239

  25. Angular correlations in neutron decay Mainz, Munich • New developments: hep-ph/0312124 CKM-Workshop, Sep. 2002, PMSN-Workshop, NIST 2004 • “little” a: aSpect, Mainz, Munich,2004 • “little” a: Kurchatov Inst., NIST • “Big” A,B,C: HD, 2004 • “Big A + B”: Gatchina • “Big” A: LANL,... • “Big” R: PSI, ongoing • “Big” D: emiT, • “Big” D: Trine, 2003 • “Big” A: HD, 2005 LANSL 135° Geometry: emiT 2000 TRINE 2000

  26. CP and Time Reversal Violation Standard Model Left-right symmetric From CKM phase: D10-12 From d199Hg: D< 10 -4 …10 -5 Exotic fermions Leptoquarks • GUTs • some SuSy models • some superstring models • some composite models • e.g. SU(2)RU(1)L • in some GUTs From d199Hg: D< 10 -4 …10 -5 D limits phases in LQ couplings! P. Herczeg, Prog. Part. Nucl. Phys. 46 (2001) 413. Torsten Soldner: CKM Workshop

  27. Searches for electric dipole moment Why has so much matter survived the big bang? What is the origin of time reversal violation? • CPT = 1: • CP-violation  T-violation • THIS CONFERENCE

  28. FRM2 2004 • Cold neutrons at the FRM II • equivalent to existing source at the ILL • UCN source at the FRM II • 2 orders of magnitude higher density at FRM

  29. PSI, UCN Source, this workshop F overall = 100

  30. INPUT: NEUTRON BEAM CONSTANTS OUTPUT: NEUTRON RATES The ‘ballistic’ super-mirror cold-neutron guide H113 H. Haese et al., Nucl. Instr. Meth. A485, 453 (2002) capture flux Φ 1,4 E+10 cm-2 s-1 intensity I0=ΦA 1,9 E+12 s-1 beam area A 120 cm2 densityρ=Φ/v 1,6 E+05cm-3 mean velocity v 1000ms-1 no. of neutrons per beam length N/l=ρA=I0/v 1,9 E+09m-1 neutr. lifetimet 885 s neutron decay rate/beam length n/l = I0/v/τ 2,2 E+06sec-1 m-1

  31. The New PERKEO proton or electron detector simulated electron trajectories neutron cloud detector proton or electron detector ~2m, 150mT beam stop velocity selector neutron beam chopper decay volume Dubbers, Märkisch, H.A.

  32. The future with the New Perkeo

  33. This work was done by ... • University of Heidelberg • M. Astruc Hoffmann Stefan Baeßler • Dirk Dubbers Uta Peschke • Jürgen Reich H.A. • Ulrich Mayer Daniela Mund • Christian Plonka Christian Vogel H.A. • Bernhard Brand Michael Kreuz • Daniela Mund Markus Brehm • Marc Schumann Jochen Krempel H.A. • Michael Kreuz Stefan Baeßler • Bastian Märkisch • Bastian Märkisch, Dirk Dubbers, Marc Schumann, H.A. • Institut Laue-Langevin • Torsten Soldner, Alexander Petoukhov • GSI, TUM • Mayer-Komor, Kindler • Mainz • Stefan Baeßler, Ferenc Glück, A: B: A: New PERKEO:

  34. Gravity on a Micronand Limits on Large Extra Dimensions • Galilei • Object: Neutron • Fall height: ~ 50 mm Quantum aspect

  35. WKB vs. Analytical perturbative

  36. Effective potential close above the mirror F z

  37. Limits for alpha and lambda a 1014 1013 1012 100 10 1 l m H. A. et al., Lecture Notes in Physics, Springer, 2003

  38. The gravity work has been done by ... • ILL, Grenoble: V. Nesvizhevsky, A. Petukhov, H. Boerner • Gatchina, St. Petersburg A. Gagarsky, G. Petrov, S. Soloviev • Mainz University S. Baeßler • DESY A. Westphal, • Heidelberg University: G. Divkovic, N. Haverkamp, D. Mund, S. Nahrwold, F. Rueß, T. Stöferle, HA • CERN ISN JINR B. van der Vyver K. Protasov, Yu. Voronin Strelkov

  39. Summary: Galileo in Quantumland • Good limits for • non-Newtonian interaction • between 1mm and 5mm • Limits are comparable to other • Limits, Complementary • Yukawa forces modify Airyfunction • And change energy of the state

More Related