1 / 29

principi di emodinamica; regolazione delle resistenze periferiche

principi di emodinamica; regolazione delle resistenze periferiche. TEACHING THE PRINCIPLES OF HEMODYNAMICS Francis L. Belloni K nowledge of hemodynamic principles is crucial to an understanding of cardiovascular physiology. This topic can be effectively taught by discussing

guy-glover
Download Presentation

principi di emodinamica; regolazione delle resistenze periferiche

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. principi di emodinamica; regolazione delle resistenze periferiche

  2. TEACHING THE PRINCIPLES OF HEMODYNAMICS Francis L. Belloni Knowledge of hemodynamic principles is crucial to an understanding of cardiovascular physiology. This topic can be effectively taught by discussing simple physical principles and basic algebraic equations. A variety of examples from everyday observations can be used to illustrate the physical principles underlying the flow of blood though the circulation, thereby giving the student an experiential feel for the topic in addition to an understanding of theory. Moreover, opportunities abound for showing how each hemodynamic principle can explain one or another functional feature of the cardiovascular system or a cardiovascular pathophysiological state. Thus hemodynamics can be used as an organizational thread to tie together other aspects of cardiovascular physiology. AM. J. PHYSIOL. 277 (ADV. PHYSIOL. EDUC. 22): S187–S202, 1999.

  3. In un condotto, la velocità è inversamente proporzionale alla sezione 1 cm/s 3 cm/s 3 cm/s

  4. Il flusso è direttamente proporzionale al raggio alla quarta Il flusso è inversamente proporzionale alla lunghezza R=1, L=1 R=1, L=2 R=1.5, L=1 R=.5, L=1

  5. Flusso laminare: filetti di corrente paralleli; profilo delle velocità parabolico Q=(P1-P0)/ /R Flusso turbolento: filetti di corrente disordinati; nessun profilo delle velocità Q=(P1-P0)/ /R*kV2

  6. Resistenze in serie; Rt=R1+R2+R3 R1 R2 R3 Resistenze in parallelo; 1/Rt=1/R1+1/R2+1/R3= (R1+R2+R3)/ R1*R2*R3 R2 R2 R1 R1 R3 R3

  7. EFFETTO WINDKESSEL (mantice)

  8. CERISM 14 giugno 2011

  9. Applicando un fonendoscopio sull’arteria radiale al di sotto della cuffia, mentre la pressione nella cuffia viene abbassata progressivamente, si avvertono dei rumori che sono stati codificati da Korotkoff

  10. THE ELECTRICAL STRAIN GAUGE-WHEAT STONE BRIDGE … converts pressure signal to electrical signal

  11. 120 100 mmHg 80 sistolica Cost. di tempo t = R*C diastolica diastolica

  12. 120 100 mmHg 80 Press. Pulsatile (differenziale)= sistolica - diastolica sistolica Pressione media = diastolica + (sistolica - distolica)/3 diastolica diastolica

More Related