260 likes | 430 Views
Introduction to Data Structures and Algorithms. Chapter 5 Linked List. Lower-Level Data Structures. Linked lists are: Used to implement higher-level data structures (e.g., stacks, queues, etc) Dynamic in structure. Links.
E N D
Introduction to Data Structures and Algorithms Chapter 5 Linked List
Lower-Level Data Structures Linked lists are: Used to implement higher-level data structures (e.g., stacks, queues, etc) Dynamic in structure
Links Each data item in a linked list is embedded in an object called link or node. Each link object has a reference to the next link object in the list
Simple Linked List The operations allowed in simple linked list are: Inserting an item at the beginning of the list Deleting the item at the beginning of a list Traversing the list to display the data items in the list
Linked list • a list of items connected together as a chain • Each item contains data part and reference part • Data part: individual or compound data • Reference part: point to the next item on the linked list (location information of next item) • Operations: • Insertion • Find • Delete (element with a target value or the head element)
Comparison to array: • Similarity: • linear data structure • Operations: insertion, deletion, find • Difference: • dynamic size vs. static size in array • items are linked by references (based on many isolated but related memory spaces; array: a big piece of memory space) • referenced by relationship not by position (array: index) • To find an element, always start from the first item (no quick access) !!!
class Link //represents one item on the list { public int iData; // data item public double dData; // data item public Link next; // next link in list// ------------------------------------------------------------- public Link(int id, double dd) // constructor { iData = id; // initialize data dData = dd; // ('next' is automatically } // set to null)// ------------------------------------------------------------- public void displayLink() // display ourself { System.out.print("{" + iData + ", " + dData + "} "); } } // end class Link
What is the meaning in the following Java codes? Link someLink = new Link(); Link aLink = someLink; • Figure 5.2 • Two Link reference variables refer to the same object of type Link
class LinkList //represents the LinkedList { private Link first; // ref to first item on list// ------------------------------------------------------------- public LinkList() // constructor { first = null; // no links on list yet }// ------------------------------------------------------------- public boolean isEmpty() // true if list is empty { return (first==null); }// ------------------------------------------------------------- public void insertFirst(int id, double dd) // insert at start of list { // make new link }// ------------------------------------------------------------- public Link deleteFirst() // delete first item { // (assumes list not empty) }// ------------------------------------------------------------- public void displayList() { } } // end class LinkList
Insert a new item at the beginning of the linked list • The new item links to the original first item • The first reference points to the new item • See Figure 5.5 public void insertFirst(int id, double dd) { // make new link Link newLink = new Link(id, dd); newLink.next = first; // newLink --> old first first = newLink; // first --> newLink }
Delete the item at the beginning of the linked list • store a copy the first item • The first reference points to the next item • Figure 5.6 public Link deleteFirst() // delete first item { // (assumes list not empty) Link temp = first; // save reference to link first = first.next; // delete it: first-->old next return temp; // return deleted link }
Walk through all the elements on the linked list • Keep updating the current reference • See Figure 5.7 public void displayList() { System.out.print("List (first-->last): "); Link current = first; // start at beginning of list while(current != null) // until end of list, { current.displayLink(); // print data current = current.next; // move to next link } System.out.println("");}
class LinkListApp { public static void main(String[] args) { LinkList theList = new LinkList(); // make new list theList.insertFirst(22, 2.99); // insert four items theList.insertFirst(44, 4.99); theList.insertFirst(66, 6.99); theList.insertFirst(88, 8.99); theList.displayList(); // display list while( !theList.isEmpty() ) // until it's empty, { Link aLink = theList.deleteFirst(); // delete link System.out.print("Deleted "); // display it aLink.displayLink(); System.out.println(""); } theList.displayList(); // display list } // end main() } // end class LinkListApp
Find the first item with the target key on the list public Link find(int key) // find link with given key { // (assumes non-empty list) Link current = first; // start at 'first' while(current.iData != key) // while no match, { if(current.next == null) // if end of list, return null; // didn't find it else // not end of list, current = current.next; // go to next link } return current; // found it }
Delete the first item with the target key in the linked list • See Figure 5.8 • Shift all the elements down after deletion?
public Link delete(int key) // delete link with given key { // (assumes non-empty list) Link current = first; // search for link Link previous = first; while(current.iData != key) { if(current.next == null) return null; // didn't find it else { previous = current; // go to next link current = current.next; } } // found it if(current == first) // if first link, first = first.next; // change first else // otherwise, previous.next = current.next; // bypass it return current; }
class LinkList2App { public static void main(String[] args) { LinkList theList = new LinkList(); // make list theList.insertFirst(22, 2.99); // insert 4 items theList.insertFirst(44, 4.99); theList.insertFirst(66, 6.99); theList.insertFirst(88, 8.99); theList.displayList(); // display list Link f = theList.find(44); // find item if( f != null) System.out.println("Found link with key " + f.iData); else System.out.println("Can't find link"); Link d = theList.delete(66); // delete item if( d != null ) System.out.println("Deleted link with key " + d.iData); else System.out.println("Can't delete link"); theList.displayList(); // display list } // end main() } // end class LinkList2App
How to insert an item at the end of the linked list? Double-Ended Linked list • Figure 5.9 • Maintain two references • One reference to the first item • Another reference to the last item • Perform insertion and deletion at both ends of the list • Improve insertion and deletion operation efficiency
class FirstLastList { private Link first; // ref to first link private Link last; // ref to last link// ------------------------------------------------------------- public FirstLastList() // constructor { first = null; // no links on list yet last = null; }// ------------------------------------------------------------- public boolean isEmpty() // true if no links { return first==null; }// ------------------------------------------------------------- public void insertFirst(long dd) // insert at front of list { }// ------------------------------------------------------------- public void insertLast(long dd) // insert at end of list { }// ------------------------------------------------------------- public long deleteFirst() // delete first link { // (assumes non-empty list) }// ------------------------------------------------------------- public void displayList() { }// ------------------------------------------------------------- } // end class FirstLastList
// ------------------------------------------------------------- public void insertFirst(long dd) // insert at front of list { Link newLink = new Link(dd); // make new link if( isEmpty() ) // if empty list, last = newLink; // newLink <-- last newLink.next = first; // newLink --> old first first = newLink; // first --> newLink }// ------------------------------------------------------------- public void insertLast(long dd) // insert at end of list { Link newLink = new Link(dd); // make new link if( isEmpty() ) // if empty list, first = newLink; // first --> newLink else last.next = newLink; // old last --> newLink last = newLink; // newLink <-- last }// ------------------------------------------------------------- Figure 5.10
public long deleteFirst() // delete first link { // (assumes non-empty list) long temp = first.dData; if(first.next == null) // if only one item last = null; // null <-- last first = first.next; // first --> old next return temp; }// ------------------------------------------------------------- public long deleteLast() // delete last link { ? }
public void displayList() { System.out.print("List (first-->last): "); Link current = first; // start at beginning while(current != null) // until end of list, { current.displayLink(); // print data current = current.next; // move to next link } System.out.println(""); }
Running time analysis • Insertion, deletion • O(N) or O(1)? • Compare to operations in the array
Stack Linked List Implementation • The push operation on a stack, inserts the new node (with data) to the top (front) of the stack myStack.insertFirst(data) • The pop operation deletes the first node of the stack myStack.deleteFirst() • See Listing 5.4
Queue Linked List Implementation • A node with data is inserted at the tail of the queue (last node) myQueue.insertLast(data) • A node is removed from the front of the queue (the first node) myQueue.deleteFirst() • See Listing 5.5