320 likes | 490 Views
7 x 2 – 3 x + 1. Warm Up Combine like terms. 1. 9 x + 4 x 2. –3 y + 7 y 3. 7 n + (–8 n ) + 12 n Find the perimeter of each rectangle. 4. a 10 ft by 12 ft rectangle 5. a 5 m by 8 m rectangle Simplify. 6. 3(2 x 2 – x ) + x 2 + 1. 13 x. 4 y. 11 n. 44 ft. 26 m.
E N D
7x2 – 3x + 1 Warm Up Combine like terms. 1.9x + 4x 2. –3y + 7y 3. 7n + (–8n) + 12n Find the perimeter of each rectangle. 4. a 10 ft by 12 ft rectangle 5. a 5 m by 8 m rectangle Simplify. 6. 3(2x2 – x) + x2+ 1 13x 4y 11n 44 ft 26 m
2 3 2 3 (5x + x + 2) + (4x + 6x ) 2 3 2 3 5x + x + 2 + 4x + 6x 2 3 9x + 7x + 2 Associative Property Combine like terms. Example 1A: Adding Polynomials Horizontally Add. (5x3 + x2 + 2) + (4x3 + 6x2)
(6x3+ 8y2+ 5xy) + (4xy – 2y2) 6x3 + 8y2 + 5xy + 4xy – 2y2 2 3 6x + 6y + 9xy Associative Property Combine like terms. Example 1B: Adding Polynomials Horizontally Add. (6x3+ 8y2 + 5xy) + (4xy – 2y2)
(3x2y – 5x) + (4x + 7) + 6x2y 3x2y – 5x + 4x + 7 + 6x2y 9x2y – x + 7 Associative Property Combine like terms. Example 1C: Adding Polynomials Horizontally Add. (3x2y – 5x) + (4x + 7) + 6x2y
2 4 2 4 (3y + y + 6) + (5y + 2y ) 2 4 2 4 3y + y + 6 + 5y + 2y 2 4 8y + 3y + 6 Associative Property Combine like terms. Example 2A Add. (3y4 + y2 + 6) + (5y4 + 2y2)
3 (9x + 6p2 + 3xy) + (8xy – 3p2) 2 2 3 9x + 6p + 3xy + 8xy – 3p 9x3+ 3p2 + 11xy Associative Property Combine like terms. Example 2B Add. (9x3 + 6p2 + 3xy) + (8xy – 3p2)
(3z2w – 5x) + (2x + 8) + 6z2w 3z2w – 5x + 2x + 8 + 6z2w 9z2w – 3x + 8 Associative Property Combine like terms. Example 2C Add. (3z2w – 5x) + (2x + 8) + 6z2w
You can also add polynomials in a vertical format. Write the second polynomial below the first one, lining up the like terms. If the terms are rearranged, remember to keep the correct sign with each term.
4x2 + 2x + 11 + 2x2 + 6x + 9 6x2 + 8x + 20 Example 3: Adding Polynomials Vertically Add. A. (4x2 + 2x + 11) + (2x2 + 6x + 9) Place like terms in columns. Combine like terms.
+ 5mn2 + 2m – n 8mn2 – 4m + 5n 3mn2 – 6m + 6n –2y2 + 2 –x2y2+ 6x2 – 2y2 + 10 Example 3: Adding Polynomials Vertically Add. B. (3mn2 – 6m + 6n) + (5mn2 + 2m – n) C. (–x2y2 + 5x2) + (–2y2 + 2) + (x2 + 8) Place like terms in columns. Combine like terms. –x2y2 + 5x2 Place like terms in columns. + x2 + 8 Combine like terms.
6x2 + 6x + 13 + 3x2 + 2x + 4 9x2 + 8x + 17 Example 4 Add. A. (6x2 + 6x + 13) + (3x2+ 2x + 4) Place like terms in columns. Combine like terms.
+ 2mn2 – 2m – 2n 6mn2 + 4m 4mn2 + 6m + 2n 2y2 – 2 x2y2– 4x2 + 2y2 – 2 Example 4 Add. B. (4mn2 + 6m + 2n) + (2mn2 – 2m – 2n) C. (x2y2 – 5x2) + (2y2 – 2) + (x2) Place like terms in columns. Combine like terms. x2y2 – 5x2 Place like terms in columns. + x2 Combine like terms.
Subtraction is the opposite of addition. To subtract a polynomial, you need to find its opposite.
Example 1: Finding the Opposite of a Polynomial Find the opposite of each polynomial. A. 8x3y4z2 –(8x3y4z2) Distributive Property. –8x3y4z2 B. –3x4 + 8x2 –(–3x4 + 8x2) Distributive Property. 3x4– 8x2
Additional Example 1: Finding the Opposite of a Polynomial Find the opposite of the polynomial. C. 9a6b4 + a4b2– 1 –(9a6b4 + a4b2– 1) Distributive Property. –9a6b4 –a4b2 + 1
Example 1: Subtracting Polynomials Horizontally Subtract. A. (5x2 + 2x– 3) – (3x2 + 8x– 4) Add the opposite. = (5x2 + 2x– 3) + (–3x2– 8x+ 4) Associative property. = 5x2 + 2x– 3 – 3x2– 8x + 4 = 2x2– 6x + 1 Combine like terms.
Example 1: Subtracting Polynomials Horizontally Subtract. B. (b2 + 4b – 1) – (7b2–b– 1) Add the opposite. = (b2 + 4b – 1) + (–7b2+b+ 1) Associative property. = b2 + 4b – 1 – 7b2 + b + 1 = –6b2 + 5b Combine like terms.
Example 2A Subtract. (2y3 + 3y + 5) – (4y3 + 3y + 5) Add the opposite. = (2y3 + 3y + 5) + (–4y3– 3y – 5) Associative property. = 2y3 + 3y + 5 – 4y3– 3y– 5 = –2y3 Combine like terms.
Example 2B Subtract. (c3 + 2c2+ 3) – (4c3–c2– 1) = (c3 + 2c2+ 3) + (–4c3+c2+ 1) Add the opposite. = c3 + 2c2+ 3 – 4c3 + c2 + 1 Associative property. = –3c3 + 3c2 + 4 Combine like terms.
You can also subtract polynomials in a vertical format. Write the second polynomial below the first one, lining up the like terms.
Example 3: Subtracting Polynomials Vertically Subtract. (2n2– 4n + 9) – (6n2– 7n + 5) (2n2– 4n + 9) 2n2– 4n + 9 – (6n2 – 7n + 5) +–6n2 + 7n –5 Add the opposite. –4n2 + 3n + 4
Example 4: Subtracting Polynomials Vertically Subtract. (10x2 + 2x –7) – (x2 + 5x + 1) (10x2 + 2x –7) 10x2 + 2x –7 Add the opposite. – (x2 + 5x + 1) + –x2– 5x– 1 9x2– 3x– 8
Example 5: Subtracting Polynomials Vertically Subtract. (6a4– 3a2–8) – (–2a4 + 7) (6a4– 3a2–8) 6a4– 3a2–8 – (–2a4 + 7) + 2a4– 7 Rearrange as needed. 8a4 – 3a2– 15
Lesson Quizzes Standard Lesson Quiz Lesson Quiz for Student Response Systems
9m2 – 3m + 6 3yz2+ 4yz + 7 2 7xy + 2x + 3y + 2 Lesson Quiz: Part I Add. 1. (2m2 – 3m + 7) + (7m2 – 1) 2. (yz2 + 5yz + 7) + (2yz2 – yz) 3. (2xy2 + 2x – 6) + (5xy2 + 3y + 8)
Lesson Quiz Find the opposite of each polynomial. Subtract. 3. (3z2 – 7z + 6) – (2z2 + z– 12) 2.–3m3 + 2m2n 3m3– 2m2n 1. 3a2b2c3 –3a2b2c3 z2– 8z + 18 4.–18h3– (4h3 + h2– 12h + 2) 5. (3b2c + 5bc2– 8b2) – (4b2c + 2bc2–c2) –22h3–h2 + 12h– 2 –b2c + 3bc2– 8b2 + c2
Lesson Quiz for Student Response Systems 1. Add(4p2 – 8p +11) + (6p2 – 9). A. 10p2 – 8p + 2 B. 10p2 + 8p + 20 C. 2p2 + 8p + 2 D.10p2 – 8p + 20
Lesson Quiz for Student Response Systems 2. Add(gh2 + 9gh + 11) + (3gh2 – gh). A. 2gh2 + 8gh + 11 B. 2gh2 + 10gh + 11 C. 4gh2 + 8gh + 11 D.4gh2 + 10gh + 11
Lesson Quiz for Student Response Systems 3. Add(7uv3 + 11u) + (6uv3 – u –9) + (4u – 2). A. 13uv3 – 6u – 7 B. uv2 – 16u + 7 C. uv3 + 14u – 11 D.13uv3 + 14u – 11
Lesson Quiz for Student Response Systems 3. Subtract. (11p2 –5p + 9) – (3p2 + p – 17) A. 14p2 +4p – 8 B. 14p2 –6p + 26 C. 8p2 –6p + 26 D.8p2 +4p – 8