1 / 30

Chapter 3

Chapter 3. The Biological Basis of Life. Chapter Outline. The Cell DNA Structure DNA Replication Protein Synthesis. Chapter Outline. What is a Gene? Mutation: When a Gene Changes Chromosomes Cell Division: Mitosis and Meiosis New Frontiers. The Cell.

gwoolard
Download Presentation

Chapter 3

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 3 The Biological Basis of Life

  2. Chapter Outline • The Cell • DNA Structure • DNA Replication • Protein Synthesis

  3. Chapter Outline • What is a Gene? • Mutation: When a Gene Changes • Chromosomes • Cell Division: Mitosis and Meiosis • New Frontiers

  4. The Cell • Cells are the basic units of life in all living organisms. • Complex life forms, such as plants and animals, are made up of billions of cells. • The cells of all living organisms share many similarities as a result of their common evolutionary past.

  5. Cells • Prokaryotic cells are single celled organisms, such as bacteria and blue-green algae. • Life on earth can be traced back 3.7 billion years in the form of prokaryotic cells. • Eukaryotic cells, structurally complex cells, appeared 1.2 billion years ago.

  6. Structure of a Eukaryotic Cell

  7. Two Types of Cells • Somatic cells are the components of body tissues. • Gametes are sex cells. • Ova are egg cells produced in female ovaries. • Sperm are sex cells produced in male testes. • A zygote is the union between a sperm and an ovum.

  8. Part of a DNA Molecule

  9. The DNA Replication Process • Enzymes break the bonds between the DNA molecule. • Two nucleotide chains serve as templates for the formation of a new strand of nucleotides.

  10. The DNA Replication Process • Unattached nucleotides pair with the appropriate complementary nucleotide • The result is two newly formed strands of DNA. • Each new strand is joined to one of the original strands of DNA.

  11. Proteins • The major structural components of tissue. • Enzymes are proteins that serve as catalysts, initiating chemical reactions in the body. • Amino acids are the building blocks of protein. (There are 20 important amino acids. • Proteins differ according to number of amino acids and the sequence in which they are arranged.

  12. Protein Synthesis • Ribosomes help convert the genetic message from the DNA into proteins. • Messenger RNA (mRNA) carries the genetic message from the cell nucleus to the ribosome. • Transfer RNA (tRNA),found in the cytoplasm, binds to one specific amino acid.

  13. Protein Synthesis: Transcription

  14. Protein Synthesis: Assembly of an Amino Acid Chain

  15. Protein Synthesis: Assembly of an Amino Acid Chain

  16. Protein Synthesis: Assembly of an Amino Acid Chain

  17. Protein Synthesis: Translation • Decoding and implementing the genetic message on the mRNA. • The mRNA travels through the nuclear membrane to the ribosome. • tRNAs arrive at the ribosome carrying their specific amino acids. • The base triplets on the tRNA match up with the codons on the mRNA. • As each tRNA line up in the sequence of mRNA codons their amino acids link to form a protein.

  18. Genes • A gene is the entire sequence of DNA bases responsible for the synthesis of a protein. • A mutation occurs when the sequence of bases in a gene is altered. • Mutations may interfere with an organisms ability to produce vital protein and may lead to a new variety within the species, hence, evolution.

  19. Gene Structure The gene consists of exons and introns. • Exons are DNA segments transcribed into mRNA that code for specific amino acids. • Introns are DNA sequences not expressed during protein synthesis.

  20. Universal Genetic Code • The DNA code of all life on earth is composed of the same molecules and carries on similar functions. • The universality of the genetic code implies a common ancestry for all life on the planet. • Organisms differ according to the arrangement of the DNA.

  21. Help! Coding and Noncoding DNA

  22. A Human Chromosome

  23. Chromosome Structure • A chromosome is composed of a DNA molecule and associated proteins. • During normal cell functions chromosomes exist as single-stranded structures. • During cell division, chromosomes consist of two strands of DNA joined together at a constricted area called the centromere. • Since the DNA molecules have replicated, one strand of a chromosome is an exact copy of the other.

  24. Chromosomes and Genetics • Each species is characterized by a specific number of chromosomes. • Humans have 46 chromosomes. • Chromosome pairs are called homologus. • Homologous chromosomes carry genetic information influencing the same traits. • Homologous chromosomes are not genetically identical.

  25. Types of Chromosomes • Autosomes - governs all physical characteristics except sex determination. • Sex chromosomes - X and Y chromosome. • Mammal females have two X chromosomes. • Mammal males have one X and one Y chromosome.

  26. Mitosis • Mitosis is cell division in somatic cells. • Mitosis occurs during growth and repair/replacement of tissues. • The result of mitosis is two identical daughter cells that are genetically identical to the original cell.

  27. Mitosis

  28. Meiosis

  29. Evolutionary Significance of Meiosis • Meiosis and sexual reproduction are highly important evolutionary innovations. • Meiosis increases genetic variation at a faster rate than mutation. • Offspring in sexually reproducing species represent the combination of genetic information from two parents.

  30. Problems With Meiosis • Errors in meiosis may lead to spontaneous abortion or miscarriage. • Nondisjunction occurs when chromosomes don’t separate during meiosis. • A gamete containing one less chromosome that fuses with a normal gamete will produce a zygote containing 45 chromosomes. • A game containing one extra chromosome that fuses with a normal gamete will produce a zygote containing 47 chromosomes.

More Related