1 / 5

Slope and Similar Triangles

Slope and Similar Triangles. Similar right triangles can be made on every linear function . Remember the edges of similar triangles are proportional. 10. This means that the slope or slant of the line has a uniform rate of change. 4. 6. 15. 2. 3. X. X. Y. Y. -4. -2. 3. -3. 8. 6.

gwyn
Download Presentation

Slope and Similar Triangles

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Slope and Similar Triangles

  2. Similar right triangles can be made on every linear function Remember the edges of similar triangles are proportional

  3. 10 This means that the slope or slant of the line has a uniform rate of change. 4 6 15 2 3

  4. X X Y Y -4 -2 3 -3 8 6 6 -1 Example #1: Plot the two points from each function chart and draw the lines. Decide if the functions are parallel or not by drawing the two right triangles and determining if the triangles are similar. These linear functions are parallel.

  5. X Y -6 -1 -3 1 0 3 3 5 Example 2: Graph the points in the function chart, draw the line that passes through the points, and draw two similar right triangles(these may not be congruent) with their hypotenuses on the line.

More Related