1 / 41

Arene / Heteroarene Trifluoromethylation : Recent Advances

Arene / Heteroarene Trifluoromethylation : Recent Advances. Daniela Sustac October 19, 2011. On the properties of CF 3. Fluorine = most electronegative element in the periodic table; CF 3 = similar electronegativity to Oxygen (3.5); CF 3 = 2 ½ the volume of a Me group;.

gyan
Download Presentation

Arene / Heteroarene Trifluoromethylation : Recent Advances

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Arene/HeteroareneTrifluoromethylation:Recent Advances Daniela Sustac October 19, 2011

  2. On the properties of CF3 • Fluorine = most electronegative element in the periodic table; • CF3 = similar electronegativity to Oxygen (3.5); • CF3 = 2 ½ the volume of a Me group; • Introduction of F or CF3 in a molecule substantially alters its properties: lipophilicity, metabolic stability, bioavailability; • No known natural products (so far) that contain a CF3 group; • Nearly 20% drugs and 35% agrochemicals on market today contain one of more fluorine atoms. (a) Shibata, N.; Matsnev, A.; Cahard, D. Beilstein J. Org. Chem. 2010, 6, 65. (b) Ma, J.-A.; Cahard, D. Chem. Rev. 2008, 108, PR1. (c) Ma, J.-A.; Cahard, D. J. Fluorine Chem. 2007, 128, 975. (d) Shimiza, M.; Hiyama, T. Angew. Chem. Int. Ed. 2005, 44, 214. (e) McClinton, M.A.; McClinton, D.A. Tetrahedron1992, 48, 6555.

  3. CF3 Synthesis: Brief Overview Other methods of direct replacement at C: Trifluoromethylationsthrough C-C bond forming reactions (a) Swarts, F. Acad. Roy. Belg. 1892, 3, 474. (b) Ma, J.-A.; Cahard, D. J. Fluorine Chem. 2007, 128, 975.

  4. Nucleophilic Trifluoromethyl Reagents • Commercially available (Aldrich, $164 for 5 mL); • Initial synthesis: • CBrF3 (Halon 1301) ozone depleting substance, banned (Montreal protocol); • Alternative synthesis by Prakash: • Side note: CF3Br vs. CF3I vs. CF3H • C-I bond breaks more easily in water than C-Br; • CF3H ozone depleting potential <1/1000 than CF3Br; • 1 ton CF3H = 11 700 tons CO2. (a) Ruppert, I.; Schlich, K.; Volgang, W. Tet. Lett. 1984, 25, 2195. (b) Prakash, G.K.S.; Krishnamurti, R.; Olah, A.G. J. Am. Chem. Soc.1989, 111, 393. (c) Prakash, G.K.S.; Hu, J.; Olah, A.G. J. Org. Chem. 2003, 68, 4457. (d) Mohand, S.; Takechi, N.; Medebielle, M.; Dolbier, W.R. Org. Lett. 2001, 3, 4271. (e) Wikipedia

  5. Electrophilic Trifluoromethyl Reagents • Extremely difficult to generate +CF3 ; • Two classes of reagents: 1 g $107.50 (Aldrich) (a) Shibata, N.; Matsnev, A.; Cahard, D. Beilstein J. Org. Chem. 2010, 6, 65. (b) Ma, J.-A.; Cahard, D. J. Fluorine Chem. 2007, 128, 975. (c) Yagupolskii, L.M.; Kondratenko, N.V.; Timofeeva, G.N. J. Org. Chem. USSR1984, 20, 103. (d) Umemoto, T. Chem. Rev2006, 96, 1757. (e) Kieltsch, I.; Eisenberger, P.; Togni, A. Angew. Chem. Int. Ed. 2007, 46, 754.

  6. Radical Trifluoromethyl Reagents • CF3I in presence of sodium dithionite (Na2S2O4) • Trifluoromethylsulfonyl derivatives activated in presence of peroxides • N-trifluoromethyl-N-nitrosotrifluoromethanesulfonamide (a) Ma, J.-A.; Cahard, D. J. Fluorine Chem. 2007, 128, 975. (b) Langlois, B.R.; Laurent, E.; Roidot, N. Tet. Lett.1992, 33, 1291. (c) Umemoto, T.; Ando, A. Bull. Chem. Soc. Jpn. 1986, 59, 447.

  7. Outline • RadicalTrifluoromethylations (Yamakawa, Baran) • Pd-MediatedTrifluoromethylations(Grushin, Sanford, Yu, Buchwald) • Cu-MediatedTrifluoromethylations(Vicic, Amii, Hartwig, Qing, Buchwald) • Ag-MediatedTrifluoromethylations (Sanford)

  8. Radical Trifluoromethylation Using CF3I • In general, low to moderate yields, poor regioselectivity; • Radical formed is electrophilic in nature, thus it reacts better with electron rich arenes; • Electron poor arenes are sluggish; • Method is simple and mild. Kino, T.; Nagase, Y.; Ohtsuka, Y.; Yamamoto, K.; Uraguchi, D.; Tokuhisa, K.; Yamakawa, T. J. Fluorine Chem. 2010, 131, 98.

  9. Proposed Mechanism (a) Kino, T.; Nagase, Y.; Ohtsuka, Y.; Yamamoto, K.; Uraguchi, D.; Tokuhisa, K.; Yamakawa, T. J. Fluorine Chem. 2010, 131, 98. (b) Uraguchi, D.; Yamamoto, K.; Otsuka, Y.; Tokuhisa, K.; Yamakawa, T. Appl. Catal. A: Gen 2008, 342, 137. (c) Bravo, A.; Bjornvik, H.-R.; Fontana, F.; Liguori, L.; Mele, A.; Minisci, F. J. Org. Chem. 1997, 62, 7128.

  10. Innate Trifluoromethylation of Heterocycles • Innate: functionalization of the inherently reactive positions of the substrate; • Programmed: substrate prefunctionalization /directing groups. (a) Ji, Y.; Brueckl, T.; Baxter, R.D.; Fujiwara, Y.; Seiple, I.B.; Su, S.; Blackmond, D.G.; Baran, P.S. Proc. Natl. Acad. Sci. 2011, 108, 14411. (b) Langlois, B.R.; Laurent, E.; Roidot, N. Tet. Lett. 1991, 32, 7525.

  11. Reaction Optimization Ji, Y.; Brueckl, T.; Baxter, R.D.; Fujiwara, Y.; Seiple, I.B.; Su, S.; Blackmond, D.G.; Baran, P.S. Proc. Natl. Acad. Sci. 2011, 108, 14411.

  12. Mechanistic Considerations • EPR studies support radical mechanism; • CF3H observed by 19F NMR. Ji, Y.; Brueckl, T.; Baxter, R.D.; Fujiwara, Y.; Seiple, I.B.; Su, S.; Blackmond, D.G.; Baran, P.S. Proc. Natl. Acad. Sci. 2011, 108, 14411.

  13. Positional Selectivity (a) Ji, Y.; Brueckl, T.; Baxter, R.D.; Fujiwara, Y.; Seiple, I.B.; Su, S.; Blackmond, D.G.; Baran, P.S. Proc. Natl. Acad. Sci. 2011, 108, 14411. (b) Seiple, I.B.; Su, S.; Rodriguez, R.A.; Gianatassio, R.; Fujiwara, Y.; Sobel, A.L.; Baran, P.S. J. Am. Chem. Soc. 2010, 132, 13194.

  14. Pd-MediatedTrifluoromethylations: Winning Over a Difficult Reductive Elimination

  15. Reductive Elimination from Pd(II): Proof of Concept • Other ligands (dppe, dppb, tmeda) ineffective. Grushin, V.V.; Marshall, W.J. J. Am. Chem. Soc. 2006, 128, 12644.

  16. Reductive Elimination from Pd(IV): Proof of Concept • What about a PdIV species? • Look for X-type ligands that will undergo slower reductive elimination than CF3. No Ar-F or Ar-OTf observed by F NMR. Ball, N.D.; Kampf, J.W.; Sanford, M.S. J. Am. Chem. Soc. 2010, 132, 2878.

  17. Pd(II) Catalyzed ortho-Trifluoromethylation Wang, X.; Truesdale, L.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 3648.

  18. Pd(II) Catalyzed Trifluoromethylation of Aryl Chlorides • Stoichiometric transmetallation/reductive elimination studies identify TESCF3 and CsF (28%); • Further optimization identifies KF as the ideal fluoride source and renders the process catalytic. Jin Cho, E.; Senecal, T.D.; Kinzel, T.; Zhang, Y.; Watson, D.A.; Buchwald, S.L. Science2010, 328, 1679.

  19. Substrate Scope • High tolerance of functional groups (esters, amides, acetals, nitriles, ethers, heteroarenes); • Limitations: aldehydes, ketones, free –NH or –OH; • Ortho –substituted arenes exhibit low conversions with BrettPhos, but improved yields with RuPhos. Jin Cho, E.; Senecal, T.D.; Kinzel, T.; Zhang, Y.; Watson, D.A.; Buchwald, S.L. Science2010, 328, 1679.

  20. Mechanistic Insights Jin Cho, E.; Senecal, T.D.; Kinzel, T.; Zhang, Y.; Watson, D.A.; Buchwald, S.L. Science2010, 328, 1679.

  21. Trifluoromethylation of Indoles • Moderate to good yields with electron neutral and EDG groups; • Poor yields with EWG; • Radical mechanism rejected since TEMPO increases the yield; • Competition experiments: indoles with EDG react faster than with EWG; Mu, X.; Chen, S.; Zhen, X.; Liu, G. Chem. Eur. J. 2011, 17, 6039.

  22. Cu-MediatedTrifluoromethylations: Understanding an Elusive “CuCF3” Species

  23. Early Stoichiometric Studies • Most of the early procedures unreliable, low temperatures and expensive reagents, competing Ullmann coupling, elusive “CuCF3” species. (a) Wiemens, D.M.; Burton, D.J. J. Am. Chem. Soc. 1986, 108, 832. (b) Urata, H.; Fuchikami, T. Tet. Lett. 1991, 32, 91.

  24. Synthesis of a “CuCF3” Complex • First isolated “Cu-CF3” complex; • Silylation of unsaturated NHC backbone; • Upon heating, decomposes to LCu-CF2CF3. • Catalytic conditions through the addition of KOtBu not feasible, since the reaction of KOtBu and TMSCF3 is too fast. Dubinina, G.G.; Furutachi, H.; Vicic, D.A. J. Am. Chem. Soc. 2008, 130, 8600.

  25. Early Example of Catalytic Cu Trifluoromethylation • Order of reactivity: I>Br>Cl; • EWG react well, no examples with EDG; • Radical scavenging studies (dinitrobenzene) suggest against a radical mechanism; • Instead, difluorocarbene pathway is proposed; • Attempts to trap difluorocarbene with an alkene (to form cyclopropane) unsuccessful. Chen, Q.Y.; Wu, S.-W. J. Chem. Soc., Chem. Commun. 1989, 705.

  26. Cu/L Catalysis Oishi, M.; Kondo, H.; Amii, H. Chem. Commun. 2009, 1909.

  27. Stoichiometric Cu (Hartwig) • Copper reagent tolerates a large variety of functional groups; • Under Amii’s conditions, EDG unreactive and electron neutral fairly sluggish; • Hartwig points out that the catalytic active species in Amii’s case CANNOT BE the [(phen)CuCF3] (upon testing the above substrates under Amii’s conditons, only low yields were obtained); • Hartwig’s system is NOT catalytic. Morimoto, H.; Tsubogo, T.; Litvinas, N.D.; Hartwig, J.F. Angew. Chem. Int. Ed. 2011, 50, 3793.

  28. Continued Morimoto, H.; Tsubogo, T.; Litvinas, N.D.; Hartwig, J.F. Angew. Chem. Int. Ed. 2011, 50, 3793.

  29. Oxidative Trifluoromethylation (Qing) Chu, L.; Qing, F.-L. Org. Lett. 2010, 12, 5060.

  30. Oxidative Trifluoromethylation (Buchwald) Senecal, D.T.; Parsons, A.T.; Buchwald, S.L. J. Org. Chem. 2011, 76, 1174.

  31. Trifluoromethylation of Unactivated Olefins (Buchwald) • Possible pathways for allylic trifluoromethylation: • Screening of different Cu salts and electrophilic trifluoromethylation reagents identified Togni’s reagent as promising hit; Parsons, A.T.; Buchwald, S.L Angew. Chem. Int. Ed. 2011, 50, 9120.

  32. Trifluoromethylation of Unactivated Olefins (Buchwald) • Final optimized conditions: • Not compatible with: branched or cyclic olefins. Parsons, A.T.; Buchwald, S.L Angew. Chem. Int. Ed. 2011, 50, 9120.

  33. Trifluoromethylation of Unactivated Olefins (Buchwald) • Alternate mechanism: Parsons, A.T.; Buchwald, S.L Angew. Chem. Int. Ed. 2011, 50, 9120.

  34. Trifluoromethylation of Unactivated Olefins (Wang) Wang, X.; Ye, Y.; Zhang, S.; Feng, Y.; Xu, Y.; Zhang, Y.; Wang, J. J. Am. Chem. Soc. 2011, asap.

  35. Proposed Mechanism(s) Wang, X.; Ye, Y.; Zhang, S.; Feng, Y.; Xu, Y.; Zhang, Y.; Wang, J. J. Am. Chem. Soc. 2011, asap.

  36. Ag-MediatedTrifluoromethylations

  37. Ag-Mediated Trifluoromethylation • Initial studies: • Optimization: AgOTf in presence of KF; • 14 examples, limited to EDG. Ye, Y.; Hee Lee, S.; Sanford, M.S. Org.Lett. 2011, asap.

  38. Mechanistic Studies • Possible radical pathway (recall TMSCF3 is a nucleophilic source of CF3, has never been shown to form a radical): • Radical scavenging: nitrobenzene no effect, TEMPO 7% yield (ambiguous); • Different ratios obtained: against a radical mechanism; • Mechanism still TBD. (a) Ye, Y.; Hee Lee, S.; Sanford, M.S. Org.Lett. 2011, asap. (b) Kino, T.; Nagase, Y.; Ohtsuka, Y.; Yamamoto, K.; Uraguchi, D.; Tokuhisa, K.; Yamakawa, T. J. Fluorine Chem. 2010, 131, 98

  39. Conclusion • Important advances in trifluoromethylation reactions in the past 20 years; • In spite of these, a general, inexpensive, mild method still required.

  40. Romania (1918 – 1940) Bran Castle Vlad the Impaler (Vlad Tepes) Ruler of Wallachia (1431 – 1476)

More Related