250 likes | 654 Views
5.3 Complex Numbers; Quadratic Equations with a Negative Discriminant. C. o. m. p. l. e. x. n. u. m. b. e. r. s. a. r. e. n. u. m. b. e. r. s. o. f. t. h. e. +. a. b. i. f. o. r. m. ,. w. h. e. r. e. a. a. n. d. b. a. r. e. r. e. a. l. n. u.
E N D
5.3Complex Numbers; Quadratic Equations with a Negative Discriminant
C o m p l e x n u m b e r s a r e n u m b e r s o f t h e + a b i f o r m , w h e r e a a n d b a r e r e a l n u m b e r s . T h e r e a l n u m b e r a i s c a l l e d t h e r e a l p a r t o f t h e n u m b e r a + b i ; t h e r e a l i m a g i n a r y p a r t n u m b e r b i s c a l l e d t h e o f a + b i .
Sum of Complex Numbers (a + bi) + (c + di) = (a + c) + (b + d)i (2 + 4i) + (-1 + 6i) = (2 - 1) + (4 + 6)i = 1 + 10i
Difference of Complex Numbers (a + bi) - (c + di) = (a - c) + (b - d)i (3 + i) - (1 - 2i) = (3 - 1) + (1 - (-2))i = 2 + 3i
If z=a +bi is a complex number, then its conjugate, denoted by
Theorem The product of a complex number and its conjugate is a nonnegative real number. Thus if z=a +bi, then
If N is a positive real number, we define the principal square root of -N as
In the complex number system, the solution of the quadratic equation where a, b, and c are real numbers and are given by the formula
Discriminant of a Quadratic Equation is called a discriminant >0, there are 2 unequal real solutions. =0, there is a repeated real solution. <0, there are two complex solutions. The solutions are conjugates of each other.