440 likes | 600 Views
Progress on cloud parameters from SEVIRI: i ) Multi-layer clouds ii) Use of HRV channel. Phil Watts EUMETSAT. Acknowledgements to Ralf Bennartz , Andy Walther and Frank Fell robust and user-friendly SEVIRI – ATrain software. Richard Siddans, Caroline Poulsen, Elisa Carboni
E N D
Progress on cloud parameters from SEVIRI: i) Multi-layer cloudsii) Use of HRV channel Phil Watts EUMETSAT Acknowledgements to Ralf Bennartz, Andy Walther and Frank Fell robust and user-friendly SEVIRI – ATrain software Richard Siddans, Caroline Poulsen, Elisa Carboni Cloud Model Study for 2 Layer model Bryan Baum, Anthony Baran, ice scattering models Eva Borbas surface emissivity maps METEOSAT Workshop May 10-11 IfT Leipzig
Talk Outline • The OE cloud retrieval scheme • Solution Cost Jm • Jm for single and multi-layer cloud • 2-layer retrievals and validation • Use of HRV • Detection • Use in OCA METEOSAT Workshop May 10-11 IfT Leipzig
EUMETSAT OE cloud retrievals 0.6, 0.8, 1.6, 3.9, 6.3, 7.2 8.7, 9.6, 12, 13.4 mm Estimate: P, t0.55, re, f, Ts P, t0.55, re, f, Ts Prior: P, t0.55, re, f, Ts ECMWF Ts HRV f METEOSAT Workshop May 10-11 IfT Leipzig
y X2 a ‘Ny > Nx over-constrained‘ ‘Ny = Nx evenly-constrained‘ y X2 a Advantage:When radiances do not fit.. Quality Control Disadvantage:When radiances do not fit.. No result! METEOSAT Workshop May 10-11 IfT Leipzig
ym 1. Relate measurements, ym, to a ‘realistic’ model of the cloud, x, with a radiativetransfer model, y(x) Tac(e.g. LOWTRAN) x = t re pc f Tbc Rs EUMETSAT OE cloud retrievals 2. Find statexthat maximisesP(x|y) METEOSAT Workshop May 10-11 IfT Leipzig
t, re, pc, f x = Tac Rac Rdown Bce tre pc f Rbc y(x) = tre pc f Scattering model DISORT - LUTs Rs Solar RT model Thermal RT model Tac [0.6, 0.8, 1.6, 3.9, 6.2, 7.3, 8.7, 9.7, 10.8, 12., 13.4 ] y = Scattering Properties Tbc y(x) – forward model METEOSAT Workshop May 10-11 IfT Leipzig
ym 1. Relate measurements, ym, to a ‘realistic’ model of the cloud, x, with a radiative transfer model, y(x) Tac(e.g. LOWTRAN) x = t re pc f Minimise w.r.t.x: Tbc Rs in its simplest form: no prior and uncorrelated errors: EUMETSAT OE cloud retrievals 2. Find statexthat maximisesP(x|y) Use Bayes Theorem: P(x|y) ~ P(y|x).P(x) Radiance information Prior information METEOSAT Workshop May 10-11 IfT Leipzig
large residuals And when this is the result, then the cloud model might be appropriate small residuals High Jm When this is the result, then something is wrong Low Jm OE is minimisation of this: METEOSAT Workshop May 10-11 IfT Leipzig
Error Analysis: simple graphical example Thick cloud.. -No prior, -0.55, 1.6mmchannels - t, Re only METEOSAT Workshop May 10-11 IfT Leipzig
Error Analysis: simple graphical example Thin cloud.. -No prior, -0.55, 1.6mmchannels - t, Re only METEOSAT Workshop May 10-11 IfT Leipzig
Applies to all products in a pixel. Use first. Most important for cloud scenes. “Measurement cost” Applies to products individually. Less important for cloud scenes. “Expected error” METEOSAT Workshop May 10-11 IfT Leipzig
Solution cost and QC METEOSAT Workshop May 10-11 IfT Leipzig
SEVIRI and ancillary data • Coincident with Atrain overpass (bracketing times) • Detailed studies: individual overpasses • Full sample: 17 overpasses, Aug 2006 • 9 SEVIRI channels • 0.6, 0.8, 1.6, 6.2, 7.3, 8.7, 10.8, 12.0, 13.4 mm • ECMWF temperature, humidity and ozone profiles, 0.25o / 3 hourly • +RTTOV as IR channel RTM; +Bennartz SW channel RTM • CIMSS land surface emissivity (monthly) • EUMETSAT operational cloud masks • EUMETSAT operational clear sky reflectance maps METEOSAT Workshop May 10-11 IfT Leipzig
A Train Validation tool: AVACS • A Train active instruments, vertical cloud profiles, comprehensive co-location with SEVIRI, large instrument suite. METEOSAT Workshop May 10-11 IfT Leipzig
Solution cost as quality control METEOSAT Workshop May 10-11 IfT Leipzig
Solution cost as quality control METEOSAT Workshop May 10-11 IfT Leipzig
Jm < 90 No QC Solution cost as quality controlUse of a) Jmb) Sx(pc) Jm < 90 & Sx(Pc) < 5hPa METEOSAT Workshop May 10-11 IfT Leipzig
2.27 Km - no QC > 0.8 Km - no QC > Solution cost as quality control 1.31 Km - no QC > 0.43 Km - no QC > METEOSAT Workshop May 10-11 IfT Leipzig
Multi-layer cloud METEOSAT Workshop May 10-11 IfT Leipzig
Multi-layer Cloud Radar (CPR) …..OCA ice…… OCA water …… OCA Reject (upper plot) METEOSAT Workshop May 10-11 IfT Leipzig
IR-only more sensitive for thin upper layer IR-only less sensitive in for medium upper layer Multi-layer Cloud Radar (CPR) … Radar (CPR)… MODIS…..OCA ice…… OCA water …. OCA Jm reject METEOSAT Workshop May 10-11 IfT Leipzig
V.Low underlying water cloud: IR-only:- upper Mid-L underlying water cloud: IR-only:- intermediate VIS IR combined e.g. OCA Single layer ice cloud: IR/VIS:- upper Single layer ice cloud: IR-only:- upper V.Low underlying IR/VIS:- intermediate Mid-L underlying IR/VIS:- intermediate Multi-layer Cloud IR only e.g. MODIS METEOSAT Workshop May 10-11 IfT Leipzig
Multi-layer Jm ~600 :- approx 100 per channel:- S/N of 10 left to unravel 2-layer system RAL/Oxford Study Multi-layer Cloud METEOSAT Workshop May 10-11 IfT Leipzig
VIS + IR Measurement residuals (9) y-y(x) Low solution J CTP 0.0 iteration Tskin Single layer cloud – single layer model Reality Model COT Reff METEOSAT Workshop May 10-11 IfT Leipzig
VIS + IR Measurement residuals (9) High solution J CTP y-y(x) COT Reff 0.0 iteration Tskin Two layer cloud – single layer model Reality Model Now: don’t reject but Re-run using 2-layer model >> METEOSAT Workshop May 10-11 IfT Leipzig
IR only Measurement residuals (9) y-y(x) Low solution J CTP 0.0 COT Reff iteration X = [ t, reff, pc, f, Tskin] Two layer cloud – Tskin as proxy lower CTT Reality Model Black lower boundary Tskin Tskin = proxy black cloud CTT_L METEOSAT Workshop May 10-11 IfT Leipzig
CTP_L COT_L= (COT_VIS+IR COT_U) CTT_L Tskin = CTT_L adjust for transparency (COT_L) Two layer cloud – proxy two layer model COT_u Reff_u CTP_u Upper level (ice) properties Grey lower level cloud METEOSAT Workshop May 10-11 IfT Leipzig
Channel noise for 2-Layer • 0.6 Nominal • 0.8 Nominal • 1.6 Nominal • 3.9(not currently used – but getting close?) • 6.2 – use @ noise = 0.4 K • 7.3 – use @ noise = 0.4 K • 8.7 Nominal • 9.6not used • 10.8 Nominal • 12.0 Nominal • 13.4 Nominal WV channels necessary! METEOSAT Workshop May 10-11 IfT Leipzig
CloudSat CPR CPR CLDCLASS product SEVIRI True RGB Retrievals SEVIRI 2L upper MODIS +30 hPa QC (valid upper layer only) SEVIRI 2L Lower SEVIRI 1L (water) 2-Layer CTP Examples 1: CPR orbit 1415 METEOSAT Workshop May 10-11 IfT Leipzig
CloudSat CPR SEVIRI True RGB Retrievals 2-Layer CTP Examples 1: CPR orbit 1415 SEVIRI Lower COT SEVIRI Upper COT METEOSAT Workshop May 10-11 IfT Leipzig
CALIOP SEVIRI Cost 2-Layer CTP Examples 2: CPR orbit 1705 METEOSAT Workshop May 10-11 IfT Leipzig
2-Layer CTP Examples 3: CPR orbit 11318 METEOSAT Workshop May 10-11 IfT Leipzig
2-Layer CTP validation – 2nd layer analysis METEOSAT Workshop May 10-11 IfT Leipzig
All cases +Re-assigned 2-Layer CTP validation2L Upper layer only +Re-assigned +Jm50 +Spc30 +Re-assigned +Jm50 METEOSAT Workshop May 10-11 IfT Leipzig
All cases +Jm50 2-Layer CTP 2L Lower layer – Re-assigned pixels +Jm50+Spc30 METEOSAT Workshop May 10-11 IfT Leipzig
All cases +Jm50 2-Layer CTP validation2L Lower layer – CPR 2nd layer heights +Jm50+Spc30 METEOSAT Workshop May 10-11 IfT Leipzig
When Cost =/= ML e.g. (1) Single layer OCA Scene east of Madagascar > High view angle Aerosol? 2 layer OCA METEOSAT Workshop May 10-11 IfT Leipzig
When Cost =/= ML e.g. (2) Central section not strictly multi-layer, but highly diffuse upper cloud > high Jm 2 Layer models the diffuse aspects Lower layer properties open to interpretation METEOSAT Workshop May 10-11 IfT Leipzig
Multi-layer cloud: Summary • Solution cost in scene Quality Control • Flags most Multi-Layer situations • Flags also diffuse top situations • Flags “other” situations tbd..& td reduced by improved RT? • Recovery of 2 layer information in ML cloud • Recovers accurate upper layer and plausible lower CTP • Improves diffuse top situations • Todo: Implement proper scheme! Re-introduce VIS in 2Layer.. • Todo: Validate 2L COTs METEOSAT Workshop May 10-11 IfT Leipzig
SEVIRI 0.6,0.8,1.6 HRV CFR .. by counting .. by ratio HRV for fraction F.Guess. HRV cloud detection + Time constrained METEOSAT Workshop May 10-11 IfT Leipzig
HRV for fraction F.Guess. OCA Cost – control Mean 61 OCA Cost – HRV CFR by Counting Mean 48 OCA Cost – HRV CFR by Ratio Mean 29 METEOSAT Workshop May 10-11 IfT Leipzig
HRV for fraction: Validation with A-Train CPR METEOSAT Workshop May 10-11 IfT Leipzig
HRV for fraction: Validation with A-Train CPR f=0 f=HRV METEOSAT Workshop May 10-11 IfT Leipzig
Thank you for your attention! DLR Oberpfaffenhofen 4 Mar 2011