450 likes | 579 Views
Situación del ILC y de la Red Española de Futuros Aceleradores Barcelona, 7- Mayo 2009 A. Ruiz (IFCA). Esquema de la Presentación. El ILC Principales eventos desde la reunión de Santiago Situación del ILC Red española Actividades y progreso.
E N D
Situación del ILC y de la Red Española de Futuros Aceleradores Barcelona, 7- Mayo 2009 A. Ruiz (IFCA) A. Ruiz (Jornadas ILC. Barcelona,7-8 Mayo 2009)
Esquema de la Presentación • El ILC • Principales eventos desde la reunión de Santiago • Situación del ILC • Red española • Actividades y progreso A. Ruiz (Jornadas ILC. Barcelona,7-8 Mayo 2009)
Principales eventos desde la reunión de Santiago • LCWS08 (Chicago, Nov 2008) (A. Ruiz, alignment,…) • SiLC Meeting (Santander, Dec. 2008) (most of the spanish groups) • SiD Meeting (Seoul, Febr. 2009) (M. Vos, Spanish Network) • ILD Meeting (SLAC, March 2009) (I. Vila, Spanish Network) • TILC09 (Tsukuba, April 2009) (A. Ruiz, Spanish Network) A. Ruiz (Jornadas ILC. Barcelona,7-8 Mayo 2009)
R. Heuer, LCWS08 new physics around 2010/12 ? Large Hadron electron Collider Goal: CDR end 2009 2010/12 A. Ruiz (Jornadas ILC. Barcelona,7-8 Mayo 2009)
CLIC-ILC Collaboration Jean-Pierre Delahaye CLIC Collaboration Board ILC GDE started November 2007 ILC CLIC No additional meetings but reinforced participation of CLIC experts to ILC meetings and ILC experts to CLIC workshop A. Ruiz (Jornadas ILC. Barcelona,7-8 Mayo 2009)
S. Yamada, LCWS08 A. Ruiz (Jornadas ILC. Barcelona,7-8 Mayo 2009)
TILC09 A. Ruiz (Jornadas ILC. Barcelona,7-8 Mayo 2009)
S. Yamada ( TILC09)….. A. Ruiz (Jornadas ILC. Barcelona,7-8 Mayo 2009)
ILD group History ILD group was formed in 2007 GLD and LDC groups merged into ILD Baseline parameters were fixed in Sep.2008 Group structure (for LOI) Joint steering board (2x3 members) Working groups (2 contacts for each) Optimization MDI/Integration Software Costing Sub-detector contacts (1-2 contacts for each) VTX/Si-trk/TPC/ECAL/HCAL/Mu-det/DAQ/Solenoid Representatives for common task groups (1-2 reps for each) LOI-rep./Physics/Det.-R&D/Soft/Eng.-tool/MDI LOI signatories 695 people signed up 32 countries 148 institutions Y. Sugimoto, TILC09 ILD executive board 13 13 A. Ruiz (Jornadas ILC. Barcelona,7-8 Mayo 2009)
R&D plan Sub-detector R&D is done by “horizontal collaborations” ECAL and HCAL: CALICE collaboration TPC: LC-TPC collaboration Si trackers: SiLC collaboration VTX: Many collaborations (LCFI/MAPS/DEPFET/FPCCD/…) Forward detectors: FCAL collaboration ILD R&D goal by 2012 All sub-detector options will continue R&D The R&D should reach to a point where a rapid decision can be made between options when the project (ILC) is approved Big challenges of ILD detector R&D Power pulsing R&D for electronics enabling sufficient power reduction Vibration test in a sufficiently strong B field Further demonstration of PFA Spectrometer (prototype TPC?) and calorimeter combined Using high energy hadron beam Y. Sugimoto, TILC09 16 16 A. Ruiz (Jornadas ILC. Barcelona,7-8 Mayo 2009)
SiD project definition Hiro Aihara, TILC09 • Design an ILC general purpose detector that enables precision measurements on • Higgs boson properties, • Gauge boson scattering, • Effects resulting form extra dimensions, • Supersymmetric particles, and • Top quark properties. • Challenges • Excellent mass resolution to measure recoil masses, kinematic edges and spectra • Flavor tagging capability based on a precision vertexing • Excellent hadronic (or jet) energy resolution capable of separating W(jj) from Z(jj) • Excellent hermeticity for missing-energy final states • Works in the ILC environment • Who are we ? 234 authors, 77 institutes, 18 countries and up. A. Ruiz (Jornadas ILC. Barcelona,7-8 Mayo 2009) 17
Hiro Aihara, TILC09 • Self rad-shielding • 100 Gauss at 1m from iron • Weighs 7.8K tonnes • 12 mm radius Be beam pipe • 5 barrel yrs/4 disks/3 foward disks pixel vertex detector (~1Gpixls) • 5 barrel lyrs/4 disks Si strip tracker (Ro=1.25m) • 26Xo(20x0.64Xo + 10x1.3Xo) Si-W imaging barrel/end ECAL • 4.5 Lambda, 40 layer Stainless Steel/RPC barrel/end HCAL • 5T 1.6GJ CMS like SC coil (R=2.6-3.4m) • 11x20cm iron Flux Return instrumented by RPC for muons • Forward ECAL (LumiCal+BeamCal) covers from 90 to 3mrad • Common readout with 4-deep analog, 162M channels (excl. VTX) • No global trigger A. Ruiz (Jornadas ILC. Barcelona,7-8 Mayo 2009) 18
R&D issues Hiro Aihara, TILC09 • Engineering low-mass vertex • tracking system • cooling • pulsed power operation • vibration due to Lorentz force in 5T • More detailed tracking performance studies • Effect of non-uniform B • (6% Bz drop at the end) • failure mode analysis • Tracking algorithm requires 7 hits out of 10. So, one hit less will not degrade the performance very much. More study necessary for low pT tracks or those that have fewer than 10 "true" hits because of decays, secondary interactions, or V tracks. • in-situ alignment via Frequency scanning interferometry and/or • Infrared Transparent Silicon Sensors Would probably require an engineering prototype in 5T magnet as the 2007 ILC Tracking R&D Review Committee pointed out. A. Ruiz (Jornadas ILC. Barcelona,7-8 Mayo 2009) 19
S.Y. Choi, TILC09 A. Ruiz (Jornadas ILC. Barcelona,7-8 Mayo 2009)
S.Y. Choi, TILC09 A. Ruiz (Jornadas ILC. Barcelona,7-8 Mayo 2009)
S.Y. Choi, TILC09 A. Ruiz (Jornadas ILC. Barcelona,7-8 Mayo 2009)
S.Y. Choi, TILC09 A. Ruiz (Jornadas ILC. Barcelona,7-8 Mayo 2009)
S.Y. Choi, TILC09 A. Ruiz (Jornadas ILC. Barcelona,7-8 Mayo 2009)
B. Barish A. Ruiz (Jornadas ILC. Barcelona,7-8 Mayo 2009)
B. Barish A. Ruiz (Jornadas ILC. Barcelona,7-8 Mayo 2009)
B. Barish A. Ruiz (Jornadas ILC. Barcelona,7-8 Mayo 2009)
B. Barish A. Ruiz (Jornadas ILC. Barcelona,7-8 Mayo 2009)
B. Barish A. Ruiz (Jornadas ILC. Barcelona,7-8 Mayo 2009)
Forward Tracking at the next e+e- collider, presented by Alberto RUIZ JIMENO (Universidad de Cantabria) • On behalf of Spanish Network for Future Linear Accelerators • A lot of activities in Spain on ILC detector and accelerators • “forward physics” oriented • Forward tracking is very important in many physics cases; • Pose great challenge: • The material • Hermetic coverage • Significant background at smallest radii • The unfavorable orientation of the magnetic field • Abundant low momentum tracks – pattern recognition • For ILD, we are nowhere near the goal, and far from the performance of the central tracker A. Ruiz (Jornadas ILC. Barcelona,7-8 Mayo 2009) Yulan Li: Vertex and Tracking Summary
Forward Tracking at the next e+e- collider (cont.) • R&D on Detectors, covering: • sensors: DEPFET pixels, 3D sensors, thinned microstrips, semitransparent microstrips. • FE electronics, development of DSM r/o chip. • mechanics: deformation and thermal analysis. • Towards an engineering design Calibration/alignment Mechanical support Services A. Ruiz (Jornadas ILC. Barcelona,7-8 Mayo 2009) Yulan Li: Vertex and Tracking Summary
IFCA USC Barcelona U. R. L. U. B. CNM-IMB CIEMAT IFIC Coordinated ILC detector- effort in Spain Silicon for Large Colliders IFIC, IFCA (since 2005), UB, CNM, USC IFCAEUDET member, several associates Strong Spanish participation in DEPFET IFIC (since 2005) USC, UB, URL, CNM (since 2008) CALICE CIEMAT Madrid and activities in accelerators R&D Coordinated effort : - regular meetings - funding/projects - R&D interests - the forward tracker… A. Ruiz, TILC09 Forward Tracker A. Ruiz (Jornadas ILC. Barcelona,7-8 Mayo 2009)
Forward Tracking, Physics case: Conclusions • e+e-Z/g*l+l- at the Z-pole has predominantly central final products. But ISR causes increasing fraction of forward-backward at larger center-of-mass energies • 4, 6,and even 8-fermion abundantly produced with increasing center-of-mass energies. As e.g. t anti-t W+bW-anti-b, rarely fully contained in the central detector • Scalar electron production has a strong t-channel contribution, with final state electrons peaking in the forward-backward direction • Final state fermions in di-boson production peaking in the forward-backward direction • The same for Higgs boson production through vector-boson fusion • Forward-backward region specially important for final states with electrons, but not only then • Other channels not discussed here make a good case for forward tracking A. Ruiz, TILC09 A. Ruiz (Jornadas ILC. Barcelona,7-8 Mayo 2009)
Tracking performance TESLA ref for low polar angle : s(1/pT)= 1.8×10-3⊕1.3×10-2/ pT (GeV-1) ILD: We are nowhere near the goal, and far from the performance of the central tracker (figure lines: s(1/pT)= 2.0×10-5⊕1.0×10-3/ (pT sin q)(GeV-1), srf = 5 mm ⊕ 10 mm/ (pT sin q))!! Most of this is plain geometry: unfavorable orientation of the magnetic field (s(1/pT)), and large distance of the FTD1 to the interaction point (srf) A. Ruiz (Jornadas ILC. Barcelona,7-8 Mayo 2009) A. Ruiz, TILC09
Momentum resolution ILD momentum resolution Single muons in ILD00 • Performance ~ stable down to 36o • Steep loss between 6-36o worse forward performance is the result of a combination of (a) magnetic field orientation (inevitable within 4p detector geometry) (b) loss of # of measurements in TPC ILD00 1 GeV 10 GeV 100 GeV A. Ruiz, TILC09 A. Ruiz (Jornadas ILC. Barcelona,7-8 Mayo 2009)
Momentum resolution Momentum resolution for electrons (remember t-channel!!) • Ongoing study (Jordi Duarte, IFCA): generate single-electron samples (private, but available for those interested) • compare tracker-only momentum resolution of single electrons with the LOI results for muons • Understand tracker-parameter dependence material! ILD00 full simulation 10 GeV m- 10 GeV e- A. Ruiz, TILC09 A. Ruiz (Jornadas ILC. Barcelona,7-8 Mayo 2009)
ILD00 1 GeV 10 GeV 100 GeV a=5,b=10 Impact parameter resolution a (mm) b (mm . GeV) b Strongly reduce the multiple Coulomb scattering term (material: 0.1 % X0 / layer ~ 100 mm Si) Unprecedented precision (small pixels, 20x20 mm2) a 100 mm ILD vertexing performance central: a~1.7 mm forward: performance significantly worse than extrapolation of barrel formula with a=5,b=10 10 mm A. Ruiz (Jornadas ILC. Barcelona,7-8 Mayo 2009) A. Ruiz, TILC09