1 / 23

e + e -  J/ y (cc) at s ≈ 10.6 GeV

_. e + e -  J/ y (cc) at s ≈ 10.6 GeV. S.L. Olsen (U of Hawai’i) Representing elle. QWG 2004 Worksop IHEP Beijing. Pinch-hitting for (visaless) Henryk Palka. INS Krakow. 2001: Belle & BaBar report on e + e - J/ y X @  s ≈ 10.6 GeV. BaBar: PRL 87, 162002.

hadar
Download Presentation

e + e -  J/ y (cc) at s ≈ 10.6 GeV

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. _ e+e- J/y (cc) at s≈10.6 GeV S.L. Olsen (U of Hawai’i) Representing elle QWG 2004 Worksop IHEP Beijing

  2. Pinch-hitting for (visaless)Henryk Palka INS Krakow

  3. 2001: Belle & BaBar report on e+e-J/y X @s≈10.6 GeV BaBar: PRL 87, 162002 Belle: PRL 88,052001 L =21 fb-1 L =32 fb-1 ZZZZ PJ/y(GeV/c) PJ/y(GeV/c)

  4. 2002: look in detail at MX Pasha Pakhlov ITEP-Moscow

  5. Eureka! Eureka! Eureka! Eureka!

  6. 4 surprizes! select J/yl+l- + >2 chrgd trks • no signal for MX<Mhc • clear hc, cc0 &hc’ signals • s(e+e-  J/yhc) > 10x theory • s(e+e-  J/y cc • s(e+e-  J/y all) L=101 fb-1 ‘ hc hc cc0 * ** =0.6 ± 0.2 *E.Braaten & J. Lee PRD 67, 054007 (2003) “no unknown non-perturbative parameters” K.Abe et al (Belle) PRL 89, 142001 **NRQCD predicts this to be ≈ 0.1

  7. Possibilities “hc” peak has some contamination from e+e- ggJ/yJ/y Bodwin, Lee & Braaten PRL 90, 162001 The “hc” peak has some glueball content (in addition to charmonium) Brodsky, Goldhaber & Lee PRL 91, 112001 Dulat, Hagiwara & Lin hep-ph/04022230

  8. 2003 Check recoil mass scale using e+e-gy(2S) p+p- J/y Mx (p+p-J/y) InferDMrecoil(J/y)<3 MeV

  9. 2003: Fit for J/y J/y (+ other) components hc ‘ L=155 fb-1 cc0 hc

  10. No significant contamination from e+e- gg  J/y J/y

  11. 2003: Angular distributions are consistent with charmonium expectations l+ J/y qhel qprod X J/y e- e+ glueball prediction: 1 - 0.9cos2q 1 + 0.9 cos2q

  12. Try to reconstruct hcKSKp, or 4K Find 3 events expect 2.6 MC  No ISR b  ISR >10MeV

  13. “hc” peak looks like an hc & not like a glueball

  14. 2003: look at e+e-y(2S) X hc ‘ cc0 hc similar pattern

  15. Cross sections Theory (Braaten & Lee) : <2.3±1 fb

  16. 2004: more data, more surprizes! L= 287 fb -1

  17. Summary • Continuum e+e- J/y X is full of surprizes • s(e+e- J/yhc) > 10 x theory • e+e-  gg  J/y J/y contamination is small • No evidence for e+e- J/y glueball • e+e-J/y cc/e+e-J/y X ≈ 0.6 ± 0.2 • many times expecations • evidence for a new charmonium-like state • Mx continuum turns on near Mx≈Mhc

  18. Belle’s experience more data more surprizes

  19. Backup Slides

  20. Look at e+e-J/y D(D(*)) • Reconstruct a J/y & a D • use D0K-p+ & D+K-p+p+ • Determine recoil mass

  21. Look at M(DD(*)) 3940 MeV 9.9 ± 3.3 evts (4.5 s) DD* cc0DD* ‘ DD 4.1 ± 2.2 evts (2.1 s) hcDD “

  22. Select regions of cosqprod(hel)and then fit Mx distributions

  23. 2002 2003 L=101 fb-1 L=155 fb-1 - • e+e-J/y (cc) > e+e-J/yglue • s(e+e-J/yhc) 10x theory • evidence for hc’ • ggJ/y J/y negligible • confirm hc’ 2004 287 fb -1 ‘ hc hc cc0 non-zero continuum below DD threshold 4th peak!!

More Related