1 / 16

2011

2011. S 1. S 2. t yx. 4. 1. x. x. s nx. 4. 1. y. dy. 3. 2. s nx. t xy. 3. 2. p. t xy. ) 2. ) 2. (. (. s nx + s ny. s nx + s ny. s nx - s ny. s nx - s ny. +. -. + t 2. + t 2. 2 a. s 1 =. s 2 =. s 1. a. f. 2. 2. 2. 2. s nx. n. s 3. 2 g.

Download Presentation

2011

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 2011

  2. S1 S2 tyx 4 1 x x snx 4 1 y dy 3 2 snx txy 3 2 p txy )2 )2 ( ( s nx+ s ny s nx+ s ny s nx- s ny s nx- s ny + - + t2 + t2 2 a s1 = s2 = s1 a f 2 2 2 2 snx n s3 2 g 2 t xy tyx tan 2a = s nx- s ny p’ Tensiones Principales. Líneas Isostáticas.

  3. Ejes pricicipales de una sección Son los ejes que pasando por G el momento de inercia de la sección es máximo y mínimo, se demuestra que son perpendiculares entre si. Cuando en una sección existe un eje de simetría es un eje principal

  4. y z f Mf y z Ejes pricicipales de una sección. Línea neutra Flexión Recta: Mf coincide con eje principal Flexión Esviada: Mf no coincide con un eje principal + Línea neutra: no existe tensión normal. s = 0 - Mfz = Mf cos f Mfy = Mf sen f s = Mf ·z·sen f /Iy - Mf · y·cos f /Iz y/z = tag f· Iz /Iy Si Iz > Iy :La línea neutra se acerca a “y” o mínimo esfuerzo

  5. Secciones compuestas B b E2·B·h32/12 = E1·b·h32/12 E2 h2 b = B· E2·/E1 E1 E1 Mf/E·Iz

  6. f H H Flexión Hiperestática A q B Parábola : y = 4·f·x·(L-x) / L2 Longitud : Lf = L + 8/3 ·f 2 /L Alargamiento : d = Lf - L = 8/3 ·f 2 /L = H·L/S·E H = S·E ·8/3 ·(f /L) 2 s = H/S = E ·8/3 ·(f /L) 2

  7. MfA f A A C B B MfCB C M/ E·Iz A’ B’ Empotramientos elásticos fA = MfA /KA A Rigidez del empotramiento : KA =MfA /fA Permisividad del empotramiento : 1/KA = fA/ MfA fA = MB·L/6·E·Iz fB = MB·L/3·E·Iz KB =MB /fB = 3·E·Iz /L 1/KB = fB/ MB= L/3·E·Iz

  8. M M Asientos en vigas empotradas A B R·L = 2 M R D A M DAB = M·L2/6·E·Iz B M R DAB · 6·E·Iz/L2= M DAB · 12·E·Iz/L3= R

  9. D P C A L L L B P C A + + + - B HB RB Semipórtico IAB = IAC = Iz MC = HB·L + RB·2·L – P·L dHB = HB ·L3/ 3·E·Iz+ FA·L FA= HB·2·L2/E·Iz+ RB·4·L2/2·E·Iz-P·L2/2·E·Iz dVB = HB2·L3/E·Iz+ RB·4·L2/(2·E·Iz)·(2/3)·2·L– P·L2/(2·E·Iz)·(5/3)·L FA·2·E·Iz/L2 = HB·4+ RB·4 - P dHB ·6·E·Iz/L3 = 2·HB+ HB·12+ RB·12 – 3·P 0 = 14·HB+ 12 · RB– 3·P dVB·6·E·Iz/L3 = 0 =12HB + 16· RB– 5·P 36HB + 48· RB– 15·P = 56·HB+ RB·48 – 12·P HB= - 3/20·P dVB=0 dHB=0 RB = (17/40)·P RC = (23/40)·P MC = - 3/10·P·L

  10. P D C I I I L A B L Resolución de Pórtico

  11. P - + D C I - - - - I I L A B L SFH = 0 dVB=0 SFV = 0 dHB=0 SMF = 0 FB=0 Resolución de Pórtico FB=0 0 =(3·L·MB -HB·(L2/2+ L2+L2/2)-P·(L2/8+ L2/2)+RB·(L2/2+L2)/E·Iz 0 = (3·L·MB -HB·2·L2-P·5·L2/8+RB·3·L2/2)/E·Iz dVB=0 0 =(MB·(3L2/2) -HB·L3 -P·(29·L3/48) + RB·(4·L3/3))/E·Iz dHB=0 0 =(MB·(2·L2) -HB·(5/3·L3 )-P·(3·L3/8) + RB·L3)/E·Iz P·5·L/8 = 3·MB - HB·2·L + RB·3·L/2 P·29·L/48 = 3·MB/2 - HB·L+ RB·4·L/3 P·3·L/8 = 2· MB – 5·HB·L /3 + RB·L RB = P /2 HB = P /8 MB = P·L /24

  12. + - + P D C - L - - + + dVB=0 L dHB=0 A FB=0 Resolución de Pórtico SdVB=0 dVB1 = (MB·(L2/2+ L2))/E·Iz dVB2 = (-HB·(L2·L/2+L2/2 ·L))/E·Iz dVB3 = (-P·(L2/8·(L/2+2/3·L/2)+ L2/2·L))/E·Iz dVB4 = (RB·(L2/2·2/3·L+L2 ·L))/E·Iz B FB= 0 =(3·L·MB -HB·2·L2-P·5·L2/8+RB·3·L2/2)/E·Iz dVB= 0 =(MB·(3L2/2) -HB·L3 -P·(29·L3/48) + RB·(4·L3/3))/E·Iz

  13. + - + P D C - - L - - + + + dVB=0 L dHB=0 A FB=0 B Resolución de Pórtico SdHB=0 dVH1 =(MB·(2·L2/2+ L2))/E·Iz dVH2 =(-HB ·(2·L2/2 ·2/3·L+ L3))/E·Iz dVH3 =(-P·(L2/8·L+L2/2·L/2))/E·Iz dVH4 = (RB·(L2/2·L+L2 ·L/2)/E·Iz FB= 0 = (3·L·MB -HB·2·L2-P·5·L2/8+RB·3·L2/2)/E·Iz dVB= 0 =(MB·(3L2/2) -HB·L3 -P·(29·L3/48) + RB·(4·L3/3))/E·Iz dHB= 0 =(MB·(2·L2) -HB·(5/3·L3 )-P·(3·L3/8) + RB·L3)/E·Iz

  14. dB = 0 q B q B A C A C L L L L L RB q + + A C - - 2 · L = L’ R’B B A C 2 · L = L’ Viga hiperestática 3 apoyos N = 0 VB = +5/8· q·L VB = - 5/8· q·L MFB = - 1/8· q·L2 R’B = - 5/8· q·L’ RB = + 5/4· q·L RA = RC = + 3/8· q·L

  15. S2 S3 P P x C C E D E D S1 S4 L L x x A A B B L HA HB RA RB - + P + + L + - + dVA=0 B dHA=0 Pórtico RA = RB = P/2 HA = - HB 0 = dHA dHA1 = HA·L3/3·E·Iz dHA2/3 = HA·L3/E·Iz+ RA·L3/(2·E·Iz) – P·L3/(8·E·Iz) dHA4 = HA·L3/3·E·Iz+ RA·L3/(2·E·Iz) – P·L3/(4·E·Iz) dHA = 0 =5/3 HA+ RA – 3/8·P 5/3 HA= 1/8·P HA= 3/40·P

More Related