1 / 45

Digital Signal Processing 2 Les 4: Elementair filterontwerp

Digital Signal Processing 2 Les 4: Elementair filterontwerp. Prof. dr. ir. Toon van Waterschoot Faculteit Industriële Ingenieurswetenschappen ESAT – Departement Elektrotechniek KU Leuven, Belgium. Digital Signal Processing 2: Vakinhoud. Les 1: Inleiding 1 (Discrete signalen en systemen)

hagen
Download Presentation

Digital Signal Processing 2 Les 4: Elementair filterontwerp

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Digital Signal Processing 2Les 4: Elementair filterontwerp Prof. dr. ir. Toon van WaterschootFaculteit Industriële IngenieurswetenschappenESAT – Departement ElektrotechniekKU Leuven, Belgium

  2. Digital Signal Processing 2: Vakinhoud • Les 1: Inleiding 1 (Discrete signalen en systemen) • Les 2: Inleiding 2 (Wiskundige concepten) • Les 3: Spectrale analyse • Les 4: Elementair filterontwerp • Les 5: Schattingsproblemen • Les 6: Lineaire predictie • Les 7: Optimale filtering • Les 8: Adaptieve filtering • Les 9: Detectieproblemen • Les 10: Classificatieproblemen • Les 11: Codering • Les 12: Herhalingsles

  3. Les 4: Elementair filterontwerp • Graphical method for filter analysis magnitude response, phase response • Elementary filter design shelving filters, presence filters, all-pass filters + homework

  4. Les 4: Literatuur • Graphical method for filter analysis J. O. Smith III, Introduction to Digital Filters • Ch. 8, “Pole-Zero Analysis” • Section 8.2, “Graphical Amplitude Response” • Section 8.3, “Graphical Phase Response” • Elementary filter design J. O. Smith III, Introduction to Digital Filters • App. B, “Elementary Audio Digital Filters” Research paper: T. van Waterschoot and M. Moonen, “A pole-zero placement technique for designing second-order IIR parametric equalizer filters”, IEEE Trans. Audio Speech Language Process., vol. 15, no. 8, Nov. 2007, pp. 2561-2565.

  5. Les 4: Elementair filterontwerp • Graphical method for filter analysis magnitude response, phase response • Elementary filter design shelving filters, presence filters, all-pass filters + homework

  6. Graphical method for filter analysis • Graphical magnitude response • Graphical phase response

  7. Graphical magnitude response (1) • Factored form of filter frequency response: • zeros: q1, q2, … qM • poles: p1, p2, … pN • sampling period: T • radial frequency: ω • DC gain: g • Polar representation of factored form:

  8. Graphical magnitude response (2) • Magnitude response (= amplitude response) • Magnitude response at frequency ω = product of lengths of vectors drawn from zeros to point ejωT product of lengths of vectors drawn from poles to point ejωT

  9. Graphical magnitude response (3) • Example: pole-zero diagram 2nd order filter

  10. Graphical magnitude response (4) • Example: magnitude response 2nd order filter

  11. Graphical method for filter analysis • Graphical magnitude response • Graphical phase response

  12. Graphical phase response (1) • Factored form of filter frequency response: • zeros: q1, q2, … qM • poles: p1, p2, … pN • sampling period: T • radial frequency: ω • DC gain: g • Polar representation of factored form:

  13. Graphical phase response (2) • Phase response • Phase response at frequency ω = offset + sum of angles of vectors drawn from zeros to point ejωT sum of angles of vectors drawn from poles to point ejωT

  14. Graphical phase response (3) • Note that phase response offset can be interpreted by • assuming that every digital filter has equal number of poles and zeros • when N > M, assuming N−M zeros at z = 0 • when N< M, assuming M−N poles at z = 0

  15. Graphical phase response (4) • Example: pole-zero diagram 2nd order filter (note: offset = 0)

  16. Graphical phase response (5) • Example: phase response 2nd order filter

  17. Les 4: Elementair filterontwerp • Graphical method for filter analysis magnitude response, phase response • Elementary filter design shelving filters, presence filters, all-pass filters + homework

  18. Elementary digital filters: overview • Shelving filters: • definition • one-zero • one-pole • Presence filters: • definition • two-zero • two-pole • biquadratic • All-pass filters: • definition • biquadratic Toon van Waterschoot & Marc Moonen INTRODUCTION-2

  19. Elementary digital filters: shelving filters • Definition: • a shelving filter is a filter that amplifies a signal in the frequency range Hz (boost), while attenuating it in the range Hz (cut), or vice versa • Low-pass filter: • low-frequency boost, high-frequency cut • High-pass filter: • low-frequency cut, high-frequency boost • Cut-off frequency: • the cut-off frequency is usually defined as the frequency at which the filter gain is 3dB less than the gain at Hz (low-pass) or Hz (high-pass) Toon van Waterschoot & Marc Moonen INTRODUCTION-2

  20. Elementary digital filters: shelving filters • One-zero shelving filter: • difference equation: • transfer function: • signal flow graph:  Toon van Waterschoot & Marc Moonen INTRODUCTION-2

  21. Elementary digital filters: shelving filters • One-zero shelving filter: • 1 real zero: • highpass if • lowpass if Im Im highpass lowpass Re Re Toon van Waterschoot & Marc Moonen INTRODUCTION-2

  22. Elementary digital filters: shelving filters • One-zero shelving filter: • frequency response • frequency magnitude response: • frequency phase response: Toon van Waterschoot & Marc Moonen INTRODUCTION-2

  23. Elementary digital filters: shelving filters • One-zero shelving filter: Toon van Waterschoot & Marc Moonen INTRODUCTION-2

  24. Elementary digital filters: shelving filters • One-pole shelving filter: • difference equation: • transfer function: • signal flow graph:  Toon van Waterschoot & Marc Moonen INTRODUCTION-2

  25. Elementary digital filters: shelving filters • One-pole shelving filter: • 1 real pole: • highpass if • lowpass if Im Im highpass lowpass Re Re Toon van Waterschoot & Marc Moonen INTRODUCTION-2

  26. Elementary digital filters: shelving filters • One-pole shelving filter: • frequency response • frequency magnitude response: • frequency phase response: Toon van Waterschoot & Marc Moonen INTRODUCTION-2

  27. Elementary digital filters: shelving filters • One-pole shelving filter: Toon van Waterschoot & Marc Moonen INTRODUCTION-2

  28. Elementary digital filters: presence filters • Definition: • a presence filter is a filter that amplifies a signal in the frequency range around a center frequency Hz (boost), while attenuating elsewhere (cut), or vice versa • Resonance filter: • boost at center frequency (band-pass) • Notch filter: • cut at center frequency (band-stop) • Bandwidth: • the bandwidth is defined as the frequency difference between the frequencies at which the filter gain is 3dB lower/higher than the resonance/notch gain Toon van Waterschoot & Marc Moonen INTRODUCTION-2

  29. Elementary digital filters: presence filters • Two-zero presence filter: • diff. eq.: • transfer function: • signal flow graph:   Toon van Waterschoot & Marc Moonen INTRODUCTION-2

  30. Elementary digital filters: presence filters • Two-zero presence filter: • 2 zeros: • if : real zeros  cascade shelving filters • if : complex conj. zero pair  notch filter Im Im cascade shelving filters notch filter Re Re Toon van Waterschoot & Marc Moonen INTRODUCTION-2

  31. Elementary digital filters: presence filters • Two-zero notch filter: • transfer function in radial representation: • radial center frequency • zero radius Im notch filter Re Toon van Waterschoot & Marc Moonen INTRODUCTION-2

  32. Elementary digital filters: presence filters • Two-zero notch filter: Toon van Waterschoot & Marc Moonen INTRODUCTION-2

  33. Elementary digital filters: presence filters • Two-pole presence filter: • diff. eq.: • transfer function: • signal flow graph:   Toon van Waterschoot & Marc Moonen INTRODUCTION-2

  34. Elementary digital filters: presence filters • Two-pole presence filter: • 2 poles: • if : real poles  cascade shelving filters • if : comp. conj. pole pair  resonance filter Im Im cascade shelving filters resonance filter Re Re Toon van Waterschoot & Marc Moonen INTRODUCTION-2

  35. Elementary digital filters: presence filters • Two-pole resonance filter: • transfer function in radial representation: • radial center frequency • pole radius Im resonance filter Re Toon van Waterschoot & Marc Moonen INTRODUCTION-2

  36. Elementary digital filters: presence filters • Two-pole resonance filter: Toon van Waterschoot & Marc Moonen INTRODUCTION-2

  37. Elementary digital filters: presence filters • Biquadratic presence filter: • difference equation: • transfer function: • 2 poles: • 2 zeros: Toon van Waterschoot & Marc Moonen INTRODUCTION-2

  38. Elementary digital filters: presence filters • Biquadratic presence filter: • signal flow graph:   Toon van Waterschoot & Marc Moonen INTRODUCTION-2

  39. Elementary digital filters: presence filters • Constrained biquadratic presence filter: constrained biquadratic resonance filter constrained biquadratic notch filter Im Im Re Re Toon van Waterschoot & Marc Moonen INTRODUCTION-2

  40. Elementary digital filters: presence filters • Design procedure biquadratic presence filter • five specifications: • five filter coefficients:

  41. Elementary digital filters: presence filters • Design procedureconstrained biquadratic presence filter • four specifications: • four filter coefficients:

  42. Elementary digital filters: presence filters • Design equations resulting from graphical analysis resonance filter notch filter

  43. Elementary digital filters: all-pass filters • Definition: • a (unity-gain) all-pass filter is a filter that passes all input signal frequencies without gain or attenuation • hence a (unity-gain) all-pass filter preserves signal energy • an all-pass filter may have any phase response Toon van Waterschoot & Marc Moonen INTRODUCTION-2

  44. Elementary digital filters: all-pass filters • Biquadratic all-pass filter: • it can be shown that for the unity-gain constraint to hold, the denominator coefficients must equal the numerator coefficients in reverse order, e.g., • the poles and zeros are moreover related as follows Toon van Waterschoot & Marc Moonen INTRODUCTION-2

  45. Homework • Read research paper T. van Waterschoot and M. Moonen, “A pole-zero placement technique for designing second-order IIR parametric equalizer filters”, IEEE Trans. Audio Speech Language Process., vol. 15, no. 8, Nov. 2007, pp. 2561-2565. • Play around with Matlab code ftp://ftp.esat.kuleuven.be/pub/SISTA/vanwaterschoot/abstracts/06-177.html

More Related